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Resonant Tunneling with Electron-Phonon Interaction: An Exactly Solvable Model
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The probability for resonant tunneling through a quantum well is calculated for a model including
electron-phonon coupling. The interaction of the tunneling electron with optic phonons produces reso-
nant transmission sidebands, which are readily observable in I-V characteristics. Our results confirm the
recent experimental observation of phonon-assisted resonant tunneling in GaAs.
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The high speeds and novel electronic properties of
double-barrier resonant-tunneling structures make them
promising candidates for a new generation of electronic
devices. Since the seminal work of Tsu and Esaki' and
the first experimental realization of significant negative
differential conductance by Sollner et al. , there has
been steady progress in both speed and device quali-

ty, as measured by the peak-to-valley ratio of the
current. Qualitatively, the fundamental characteristics
of resonant tunneling are well understood (cf. Ricco and
Azbel ), but quantitative prediction of a complete
current-voltage characteristic has remained elusive.

In this Letter, we address one of the most important
processes complicating analysis of the tunneling current,
namely, electron-phonon scattering. In any real materi-
al, an electron tunneling through a double-barrier struc-
ture (see Fig. 1) will interact with phonons. The result-
ing changes in the transmission probability will be mani-
fested in the current —notably, Goldman, Tsui, and Cun-
ningham have recently found evidence for optic-
phonon-assisted resonant tunneling in the valley current
of a double-barrier resonant-tunneling structure.

In what follows, we present the first solution of a
resonant-tunneling model including electron-phonon
scattering. We have calculated the probability per unit
final energy T(e', e) that an electron of energy e, incident
from one ideal lead onto a resonant level, where it in-
teracts with phonons, will be transmitted with energy t.

'

into a second ideal lead. Since the dominant electron-
phonon interaction in most semiconductor heterostruc-
tures involves the polar-optic mode, we explicitly evalu-
ate T(e', e) for an Einstein band of optic phonons using
a typical polar-optic-phonon coupling strength. The
resulting total transmission probability, T&„(e)
=fde'T(e', e), has sideb'ands spaced at the optic-phonon
energy representing phonon-assisted transmission. We
compare the current characteristics predicted by our
model with those measured for a GaAs/A1GaAs double-
barrier resonant-tunneling structure and confirm the ex-
periment observation of phonon-assisted resonant tun-
neling. From our general expression for the total
transmission probability we also obtain a simple analyti-
cal expression for the phonon broadening of T„&(e) and
identify two sum rules satisfied by T&,&(e) for all temper-
atures, phonon spectra, and electron-phonon coupling
strengths.

The Hamiltonian that we use to model resonant tun-
neling is the sum of an electron term H„a phonon term
H~h, and an electron-phonon interaction term H;„&. The
electron Hamiltonian describes a single state of energy 5p

(e.g. , the ground state of a quantum well) coupled by
hopping matrix elements VkL and Vkg to states of energy
t.'kL and ei,g in ideal leads on its left and right, respec-
tively. The transmission matrix, T (e', e), for a nonin-
teracting electron is given by

Lo / / /, r /
/

I.IG. 1. Schematic band-edge diagram for a semiconductor
double-barrier resonant-tunneling structure. The center of the
resonant level is an energy t.'0 above the band edge in the inject-
ing lead, and the full width of the resonant level is given by I.
The width of the quantum well is Lo.

where the resonance width, I (e) =I t. (e) + rR (e),
determined by the strength of the hopping matrix ele-
ments,

I t. R(e) =2ttZk I I kL, R I 8(& &tL,R).

The real part of the self-energy, Z(e), is the Hilbert
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transform of the resonance width I (e). The phonon

Hamiltonian is just a sum of harmonic oscillators

H~h =gq htoqaqaq, and the electron-phonon interaction
is restricted to the resonant site,

cgq ~q(aq +a q)

where c and c are the fermion operators for the electron
on the resonant site.

We will calculate the probability that an electron with

energy e incident from the left lead will be transmitted
to the right lead with energy e', the "remainder" of the
energy being left in the phonon system. Because the
electron-phonon interaction is confined to a finite region
of space we can apply the 5-matrix scattering formal-
ism to evaluate the transmission matrix T(e', e). We
find that T(e', e) is equal to the product of the elastic
coupling widths to the two leads and the Fourier trans-
form of a Green's function for the resonant level,

T(e e) =I (e)I (e') ~
e' ' ' '+" " "G(r s t).

t ' t'drdtds
L R

The three-time Green's function

G(r, s, t) =8(t)B(s)(c(r—s)c (T)c(t)c (0)) (2)

is evaluated in an electron vacuum with thermal phonons. The expression for the transmission matrix, Eq. (1), is for-
mally exact and, in the absence of electron-phonon interaction, reproduces the elastic resonant-tunneling result given
above.

The problem of evaluating the Green's function of a single site coupled to phonons is well known in the context of
core-level x-ray emission. ' ' The techniques developed to treat the interaction of a stationary core hole with phonons
can be adapted directly to evaluate the three-time Green s function that appears in the transport problem. Within the
approximation of energy-independent couplings I L and I ~, we evaluate G(r, s, t) in the same manner as the Green's
functions in the core-hole problem. The restriction of energy-independent coupling to the leads corresponds to the con-
dition that the Green's function of the resonant level with no electron-phonon interaction be a simple exponential, "
Gtt(t) = ie(t) ex—p[( —ieo —I /2)t], where I =I t. + I g. We evaluate G(r, s, t), both via a canonical transformation'
and using a path-integral formulation, ' and find

2

G(r, s, t) =Gtt(t)[Gtt(s)] exp i —g [(I+2N„)Re[f]+i lm[fj]
q hcoq

f=2 —e ' ' e' '+e —'"'(e' ' —1)(e'"'—1) (4)

where X =Pq(Mq/htoq) and N„ is the Bose-Einstein occupation factor for a phonon mode of energy Ace.

Although direct evaluation of the transmission matrix T(e', e) for the general phonon spectrum will require numerical
Fourier transforms, certain sum rules and simple analytic results can be derived from the above expressions, for
energy-independent I L and I R. First, integrating the total transmission probability over incident energies, we find

fdeTt. t(e) 2zI LI q/I independent of the electron-phonon interaction. Second, the center of the transmission reso-
nance given by the first moment of Tt,t(e) normalized by fde T„,(e) is also unchanged by the electron-phonon interac-
tion. ' Last, we find that the change in width of the transmission resonance 8(e ), given by the difference between the
normalized second moment of Tt,t(e) and the normalized second moment with no electron-phonon coupling, is always
positive and is given by

~«') =gq I ~qI '(I+2Nq) (5)

Although the second moment of Tt„(e) itself cannot be defined because the line shape dies as I/e in the tails, a useful
estimate of the phonon-induced broadening can still be obtained from (5) if the important contributions to 8(e ) are
from the region near the resonance. This condition is satisfied in the case of optic phonons (discussed below) where
h(e ) approaches its asymptotic value within a few phonon energies of the resonance center.

Because of the strong polarization interaction in III-V and II-VI semiconductors, the largest electron-phonon matrix
elements are those involving longitudinal optic phonons. To determine the effect of optic-phonon interaction on reso-
nant tunneling, we have evaluated the transmission matrix T(e', e) at zero temperature for an Einstein band of phonons
with energy Acoo,

m 1T(e', e) =I Ll ge ' g, 8(e —e' —mhcoo) g (—1)'
m Om ~
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where the coupling constant g =gq(~ Mq ~/hcuo) . For a
quantum well of width Lp we estimate g by

e 1

LpANp Ep
(7)

In Fig. 2, we have plotted T&,t(e) for the Einstein model
with no electron-phonon coupling and with a coupling
constant' g=0. 1, which is appropriate for a state of
width Lo =100 A in CdTe. The sum rules imply that the
integrals under both curves are equal and that their
centers are at the same energy. At zero temperature no
optic phonons are present, and the phonon-assisted reso-
nances appear only at energies above the elastic reso-
nance. The center of the transmission curve remains
fixed, however, because there is an overall shift down in

energy by )j, =gfiroo associated with the deformation of
the lattice about the tunneling electron.

To make comparison with the experiment on a
(JaAs/AIGaAs structure, it is necessary to calculate the
current from T(e', e). The current from the left' in a
given transverse momentum channel is the sum over in-

coming momenta of the product of the incoming velocity,

the Fermi function of incoming states e, and the proba-
bility of transmission T(e', e) integrated over final ener-
gies e'. Provided that T(e', e) does not depend strongly
on transverse momentum, the transverse integral for low
temperatures gives a factor m (eF —e)/h, the momen-
tum sum combines with the factor of velocity into an in-

tegral over incident energies, and the definition of Tt f(E)
can be employed to write

Hem* 'FJ=
2 3

de(EF e) &t,t(E),
2z tt o

where A is the cross-sectional area and m* is the
eff'ective mass. Under the assumption that the elastic
couplings I L and I g can be taken as constant, the
current depends on the total bias across the device only
through the position of the resonant level. Accordingly,
in Fig. 3 we have plotted the current J versus the posi-
tion of the resonant level. The elastic width used in Fig.
3 is chosen to be I =0.2hcoo and the electron-phonon
coupling is estimated to be g =0.03. The shoulder in the
current is a replica of the main current peak produced by
phonon-assisted resonant tunneling. To obtain the
current-voltage characteristic from Fig. 3 one must re-
late the resonant-level energy to the total applied bias';
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FIG. 2. Total transmission probability Tt,&(e) vs incoming

energy for an electron incident on a double-barrier resonant-
tunneling structure with an elastic width I 0.2hcop at T=O
K. The dashed curve is calculated in the absence of electron-
phonon coupling, while the solid curve is for a coupling g =0.1

to optic phonons in CdTe (see text). If the couplings to the
contacts, VL and I z, are not equal, as is typically the case un-

der bias, then the transmission probability is reduced by a fac-
tor 4I LI a/I . The effect of phonon coupling is to shift the
elastic resonance down in energy by A. =gAmp and to produce
inelastic transmission sidebands. At T=O K, only the phonon
emission sidebands appear because there are no thermal pho-
nons to absorb. Both the integrated total transmission proba-
bility and the center of the resonance in energy are indepen-
dent of the electron-phonon interaction.

2~a)o 0 2~coo

RESONANT L EVE L ENERGY Eo

FIG. 3. Current vs resonant-level energy for the resonant-
tunneling structure shown in Fig. I, calculated from Eq. (8).
The dashed curve is for no electron-phonon coupling while the
solid curve is for a coupling g =0.03. The Fermi energy is tak-
en to be hcoo and the current is in units of Hem*I LI"QEF/

2x 0 I . The shoulder in the current when g=0.03 is due to
transmission through the first inelastic transmission sideband.
For comparison, the inset is an experimental I-V characteristic
for a GaAs/AlGaAs resonant-tunneling structure (Ref. 7).
The similarity between the experimental and theoretical curves
for the realistic value of the electron-phonon coupling g =0.03
confirms the presence of phonon-assisted resonant tunneling in

the experimental structure.
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since this relation is expected to be linear in the valley
region of the current, the phonon-induced shoulder in

Fig. 3 will be roughly unchanged in the I-V characteris-
tic. For a stronger polar-optic coupling as in CdTe or
other II-VI compounds, the phonon replica in the
current-voltage characteristic should be more pro-
nounced.

In conclusion, we have found an expression for the
probability of resonant tunneling in a model including
electron-phonon interactions. The inelastic character of
phonon scattering broadens the transmission resonance
but does not change the integrated transmission through
the barrier nor does it shift the average energy of the res-
onance. In the important case of optic phonons, we have
explicitly derived the phonon-mediated transmission
probability. Finally, by calculating the current charac-
teristic for a double-barrier resonant-tunneling structure
including a realistic optic-phonon coupling we have pro-
vided a theoretical confirmation of the experimentally
observed magnitude of phonon-assisted resonant tunnel-
ing.
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