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Phase Transitions in Systems of Grafted Rods
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Mobile rigid rods grafted on an interface are treated both by Onsager-type and Monte Carlo ap-
proaches. Symmetry arguments are presented which show that, unlike the case of hard rods in bulk, no
orientational "standing-up" transition occurs: Attractive forces between rods are necessary for a discon-
tinuous change in alignment. These conclusions are confirmed by Monte Carlo simulations and are dis-
cussed in the context of recent controversies concerning the "expanded" to "condensed" phase transition
in adsorbed surfactant monolayers.
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The successive phase transitions observed in adsorbed
surfactant monolayers, e.g. , fatty acids on water,
comprise one of the classic problems in physical chemis-
try. Many statistical mechanical theories, including lat-
tice packing and Ising Hamiltonian formulations, have
been advanced in an effort to account for the orientation-
al ordering transitions in these systems. Similarly,
powerful new experimental techniques, notably fluores-
cence microscopy, synchrotron x-ray scattering, and
second-harmonic generation, have been successfully ap-
plied to explore microscopic structures in the regions of
two-phase coexistence. Of particular interest has been
the question of whether —at pressures intermediate be-
tween those characterizing the gas-liquid condensation
and the fluid-solid ordering —a first-order transformation
occurs from "expanded" to "condensed" liquid states. A
great deal of controversy remains concerning the order
parameters, and hence the molecular degrees of freedom,
appropriate to a fundamental description of these phase
transitions. Closely associated questions concern the
presence and nature of orientational ordering (standing-
up) transitions in physisorbed, small-molecule, mono-
layers (e.g. , nitrogen on graphite ).

In an effort to clarify the above issues, we have treated
the simpler, but intimately related, problem of hard, rig-
id rods which are grafted to a planar, impenetrable, sur-
face. Hard here means that the particles interact with
each other only through short-range repulsions; rigid de-
scribes the complete neglect of conformational Aexibility;
and grafted implies that each rod has one of its ends at-
tached to the surface, even as it is mobile (i.e., free to
translate). Halperin, Alexander, and Schechter have
considered this system within the second-virial approxi-
mation and have found that the orientational order in-

creases continuously over the full range of density. They
speculated that anisotropic adsorption at the surface, or
attraction between rods, might be sufficient to give a

first-order transition. In the present Letter, employing
both mean-field (symmetry) analyses and Monte Carlo
simulations, we show that (I) unlike the situation in
bulk, grafted hard rods do not undergo a fluid-fluid

(orientational ordering) phase change; (2) attractions
between particles are necessary for a first-order transi-
tion, whereas anisotropic adsorption alone is not suf-
ficient; and (3), again unlike the fully 3D (bulk) case,
attracting hard rods which are grafted to a surface ap-
pear not to undergo successive changes of state between
gas-liquid and liquid-liquid (isotropic-nematic) uniaxial
phases.

To expose most clearly our symmetry arguments, we
use the Zwanzig approximation according to which the
rod orientations are restricted to lie along one of the
space-fixed (x,y, z) axes. With Onsager, ' we write the
dimensionless Helmholtz free energy per particle as

4ab (a+b) 2b(a+b)
V = (a +b) 4ab 2b (a +b)

,2b(a+b) 2b(a+b) 4b

(2)

For the 3D (bulk) case, on the other hand, V is fully

f= =Z p;In—p;+&Zp;pjvj+O(p'). (I)
i x,y, z

' '
2 i j

Here p; is the fraction of rods pointing along the i(=x,
y, z) direction, p=N/A is the number density of rods,
and Vj is the second-virial coefficient —the pair excluded
volume associated with hard rods having orientations i
and j. From the Osager and Zwanzig analyses ' we
know that spontaneous alignment in this system can be
qualitatively accounted for by neglect of the O(p )
terms: Accordingly, it is convenient here to consider
only the two-body covolumes. For rods (rectangular
parallelipipeds, say) of length a and width b, the VJ ma-
trix has the form
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symmetric, with all diagonal elements equal to one
another, and similarly for the off-diagonal ones. This is
because the isotropy of space can only distinguish be-
tween parallel and perpendicular pairs, whereas in the
grafted case the excluded area depends on whether the
pair of rods lie normal to or within the planar surface. It
is precisely this symmetry difference which accounts for
the contrasting phase-transition behaviors in the bulk
and grafted systems.

More explicitly, writing p~=py 3 +6 and p, =
3—2h, substituting for V~ from (2), and expanding Eq.

(1) in powers of the orientational order parameter 6, we
have

f=fo(p) + (pK)d+ (9+pL)5

+96 + —", 6 + +O(p ).

20 ~~

A

A

Here p =b p is the (dimensionless) density, and K
= —', (1+5)(X—1) and L =(X—1), with 1=a/b (& 1)
the axial ratio of a rod. From the positivity of both K
and L, it follows immediately that the d, ;„minimizing f
is nonzero, no matter how small the density (d,~;„~0
only as p 0), i.e., there is no isotropic phase; and there
is no inflection point in f vs 5, and hence only one
minimum. h, ;„simply increases continuously as the
density is raised. By contrast, in the bulk situation, the
symmetry of V results in a vanishing coefficient (K:—0)
for the linear term in 6, and in a d, coefficient (free-
energy curvature) which changes from positive to nega-
tive for sufficiently large p. This leads to the well-known
first-order orientational ordering transition in 3D sys-
tems of hard rods. 'o In the grafted case, on the other
hand, attractions between rods are necessary to give the
transition.

Including both anisotropic adsorption and interparticle
attractions, and treating the latter in mean-field approxi-
mation, we obtain " a free energy of the form (3), but
with pK pK —2e and L L —3A. Here c is the ad-
sorption energy (in units of kT) that a rod gains by lying
on the surface (relative to its standing normal). A & 0 is
a dimensionless measure of the anisotropy in the average
pair attraction between rods. It arises from the mean-
field terms ,' pg; p;pJE;J, with E;~ h—aving the form —(I
+Ah';J): Note that I (&0) makes no contribution to the
5-dependent terms in f. Hence A measures the mean
energy lowering for parallel configurations. Since e ap-
pears only in the linear term in 6, it follows that
orientational-dependent adsorption energy alone cannot
bring about a phase transition. The anisotropic attrac-
tion A enters into the free-energy curvature (d
coefficient), however, and hence suffices to introduce (at
high enough density) a second minimum in f vs h.

Specifically one can show that, for any e, a first-order
transition appears for A & ([99K/(1+72')]+ (L/3)1
—:A*. This is seen in Fig. 1 where the parameter space
associated with A and e (the two dimensionless energies

FIG. 1. Phase diagram in A, e space. For all A, t. pairs
above the solid curve (i.e., in the shaded region) no "standing-
up" transition occurs with increase in density. The asymptote
A' and intercept A" depend on axial ratio: A'=A*(e ~)

L/3, and A "(e 0) 99K +L/3. Note the change in scale
for both t. and A axes.

appearing in the problem) is divided by the curve
A A (e) into complementary regions where a phase
transition does and does not occur. That is, for any A, e
lying below this curve, an increase in density (p) results
in a first-order jump in orientational order (6); on the
curve, 5, grows in continuously with density. Note then
that anisotropic adsorption is neither sufficient nor neces-
sary: A* remains finite even as t. 0. Nevertheless,
from the approximately inverse relationship between A*
and e, we see that e& 0 does serve to raise the critical
temperature (-1/A*) for the orientational ordering
transition.

The above behavior has been confirmed by Monte
Carlo calculations in which we simulate hard sphero-
cylinders grafted to a plane. Apart from the constraint
that one end of each rod is required to stay on the sur-

face, the particles are free to translate and rotate, as long
as no rods overlap each other or penetrate the plane. In
addition to the hard-core repulsions, the spherocylinders
attract one another according to the dispersional form
—CP2(cos8;J)/r;J. where 8;~ and r;J are the angle be-
tween long axes and the distance between grafted ends,
respectively; P2(x) =(3x —1)/2 is the second Legendre
polynomial. The dimensionless quantity C=C/k Tb,
with b the rod diameter, corresponds roughly to A in the
mean-field model. The (one-body) anisotropic adsorp-
tion energy is written as ee 'cos 8;, with a chosen large
enough so that e is essentially the energy gained as a
particle lies down (0; =x/2). Our Monte Carlo simula-
tions were carried out in both the (N, A, T) and (N, P, T)
ensembles, in a square cell with periodic boundary condi-
tions. Each trial move consists of a combined translation
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FIG. 2. Monte Carlo results for the orientational order pa-
rameter, (P2), as a function of density for grafted sphero-
cylinders (N =100). The density is measured relative to that
of closest packing, po =2/J3b, where b is the diameter of the
spherocylinder. All curves are for an axial ratio of 1=4. Tri-
angles: pure hard core (C=0, e=O). Squares: (C=4, e=4,
a=8). Circles: (C=8, e=5, a=10). The lines are drawn as
a guide only.

plus rotation, with the ratio of the maximum of each ad-
justed so that translation and reorientation contribute
equally to the probability that a move is rejected. The
orientational order parameter, (Pq(cos8)), showed little
dependence on system size (we used N 100 and N
=196). All state points were equilibrated for at least
—,
'

&& 106 configurations (attempted moves), followed by a
production phase of at least 10 configurations (up to
10' near the transition) during which the averages were
evaluated. Full details of the simulations will be report-
ed elsewhere. " Here we simply show in Fig. 2 some
orientational order parameter versus density results for
particles of axial ratio 4, for different interaction poten-
tials. Note that no transition occurs for anisotropies as
small as C=4= e, whereas a large discontinuity —from
essentially lying-down to standing-up rods —appears for
slightly stronger attraction (C=8) and adsorption (e
=s).

The existence of an orientational phase transition in
the presence of strong enough attractions raises the ques-
tion of whether one should expect two, successive transi-
tions between fluid states, the first corresponding to a
gas-liquid-like condensation and the second to a liquid-
liquid-crystal-type ordering. This is, of course, precisely
what one sees in the familiar 3D, bulk, system. But in
this latter case, as we have already stressed, the lowest-
density (gas) phase has no long-range order. According-

ly, the condensation corresponds simply" to a jump in

density; it is only at the second transition that orienta-
tional ordering appears. In the grafted case, on the other
hand, the symmetry-breaking effect of the interface cou-
ples p and h, at all densities: Hence we see a phase tran-
sition in which both order parameters jump from one
nonzero value to another.

Generalizing our mean field theory to include all
powers of p in the 6-independent free energy fo, we still
find only one orientational phase transition. More ex-
plicitly, the common tangent constructions involve either
a van der Waals loop on a single branch (for small aniso-
tropies), or (for large enough Z, A, and e) a jump from
one branch to another which preempts this loop. Hence
it appears that attractions between grafted rods have
given rise to only one fluid-fluid transition in which both

p and h, jump from nonzero to larger values. The t~o,
successive, first-order coexistences observed in absorbed
surfactant monolayers ' must arise from coupling to
other degrees of freedom and/or the interplay with lower
symmetry states. Possibilities of the first type include
the conformational flexibility explicitly suppressed in the
rigid-rod theory, or different pair interaction length
scales associated with polar (ionic) head groups. A
mechanism involving new symmetry, on the other hand,
appears as soon as one allows for biaxial states. A nu-
merical analysis of our Onsager-Zwanzig-Landau
order-parameter theory then shows that two successive
orientational transitions can occur—the intermediate
state being biaxial —and that either adsorption or aniso-
tropic attraction is sufficient. ' Similar behavior is ob-
served in the Monte Carlo calculations, for sufficiently
large values of e. In this limit there are enough rods in
the plane of the surface so that a biaxial orientational or-
dering arises' at intermediate densities, although less
pronounced than in the mean-field analysis. These
points, as well as a full discussion of the corresponding
Monte Carlo simulations, and analogies with various
lattice-gas and Potts models, will be represented in a
separate paper. "
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