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Possible Resolution of the Finite-Size Scaling Problem in He
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We offer an explanation of the long-standing discrepancy between finite-size scaling theory and the
observed temperature shift Ti —T of the specific-heat maximum in confined He. On the basis of a
renormalization-group calculation using Dirichlet boundary conditions we argue that a new size-
dependent scaling variable should be employed. The theory agrees with the data in the regime T& T
without an adjustment of parameters and explains the gradual onset of finite-size effects far from T&.

PACS numbers: 67.40.Kh, 05.70.Jk, 64.60.Fr

Since the early formulation of a phenomenological
finite-size scaling theory of critical phenomena there
have been numerous theoretical studies and computer
simulations on this subject. Among the very few at-
tempts to verify this theory by experiments in real sys-
terns there exists only one set of data at the required lev-

el of accuracy: the measurements of the critical specific
heat and superfluid density in confined He by Gasparini
and co-workers. It has therefore been a severe disap-
pointment that just these data appear to contradict the
scaling theory.

The purpose of this Letter is to present detailed argu-
ments and quantitative results that point towards a natu-
ral explanation of this long-standing problem. Our
reasoning will be based entirely on the conventional
Landau-Ginzburg-Wilson Hamiltonian for the n-com-
ponent order parameter p(x) (n =2 for He),

He= ddx~ —,
'

rp~ + —,
' (V~) +u

without accepting unusually large correction-to-scaling
amplitudes or invoking surface fractal dimensionalities.
Our new point is to incorporate fairly realistic (Dirich-
let) boundary conditions (vanishing order parameter at
the walls) in a quantitative renormalization-group calcu-
lation. No adjustment of nonuniversal amplitudes or
couplings will be necessary because they are known from
bulk theory and independent bulk data.

Specifically, we shall discuss the heat capacity C of

He confined in a geometry of size L. Our attention will

be focused not only on the temperature shift Tz—T (L) of the specific-heat maximum and on the
rounding temperature' T (L), but also on a detailed
comparison of the predicted T and L dependence of
C(T,L) with the data in the regime T) T . We shall
show that Dirichlet boundary conditions (Dbc) have an
unexpectedly large effect on these quantities. In particu-
lar, the conventional power law, '

Tg —T~(L) -L (2)

where the bulk-correlation-length exponent is v=0.67,
and should be replaced by

T, (L) —T (L)-L (3)

where T, (L) & Tt, is an intrinsic reference temperature,
the introduction of which suggests itself in the analysis.
Furthermore, we find a gradual onset of finite-size effects
far from T&, which explains why previous results con-
cerning T (L) were inconclusive.

In order to substantiate these points it is necessary to
describe our calculation in some detail. We have gen-
eralized the approach of Refs. 9 and 10 to the case of a
cube with Dbc in d directions and periodic boundary
conditions (pbc) in d —d directions. For simplicity we
first consider d d and n=1. This case has been dis-
cussed recently" for d )4 where the bulk critical behav-

t

ior is mean-field-like. Here we shall study the relevant
case d & 4. We expand p(x) in standing-wave modes,

d d

p(x) =2 t pl+ sin(ttx /L)+L g'p, + sin(ttn x /L)j=l n j=l (4)

with n=(nl, . . . , nd), where g' denotes the sum over all modes (positive integers nj) except for the lowest mode —pl
(all nj =1). Accordingly, we split He =Hi+H(tip, ), where

H (y, ) =Ld[ —,
' (r +dtt2/L )y +uottt ]

with up=(2 ) up, and

d

H(y, ) = —,
' g'p, A( , n)pn, .+wpg'p, + h(nI)

(5)

(6)
a, a n j=l

1368 1988 The American Physical Society



VOLUME 61, NUMBER 12 PHYSICAL REVIEW LETTERS 19 SEPTEMBER 1988

with wp =4L t
up&~ and A(nj )—:b~„.——,

'
83„, . In Eq. (6) we have neglected terms of O(p„p, ) as is appropriate within

a one-loop approximation. The matrix elements A(n, n') read

d d

A(n, n') =(rp+x n2/L ) Q 8„„,+6upp~ Q(26„„+8„„—8„2„—6„2„).
Integration over p, yields the partition function Z =

fdic&

exp( H& ——I ) with

d

I = —,
' TrlnA ——,

' wing'QA(nz )A. '(n, n')h(nJ).
an'j 1

The final step consists in an expansion of I (p~ ) around

(7)

(8)

(y)')) =Z) '„dy) y)'exp( —H)) =M. —

The explicit calculation, e.g., of the specific heat

C& 4L 8 InZ/Brp is considerably more complicated
than in the case of pbc since A is nondiagonal. The most
significant difference shows up in typical sums such as

sistency of Eq. (14) within an explicit calculation of the
specific heat for Dbc up to one-loop order. By contrast,
there exists no need for a shift of rp in case of pbc, at
least up to two-loop order, within a dimensionally regu-
larized theory. '

Equation (14) corresponds to a shifted reference tem-

perature,

S» (ro I.) =I. 'g'(rp+n'n'/L') ' (10) T, (L) =T, (~)[1+[rp,(up, L) —rp, (up, cx)lgp], (15)

where rp rp+12up(pp)p, and now g' means summation
over all integers nj except n~ = nd 0. The main
difference can be absorbed in the shifted variable
rp =ro+dtt /L by our rewriting

SDb, (rp, L) =Stb, (ro,L)+L g(roL ), (12)

where g(t) is a smooth function with finite limits

g(0) —0.0084 for d =4 and g(~) -0. We decompose

Spb& as previously,

Spb, (rp, L) (rp+q ) +Gpb, (rpL ). (13)

In d=4 —e the bulk integral yields Ad[e
+ —,

' lnrp+O(e)] with the crucial difference that ln rp
has replaced ln rp. This demonstrates that the shifted
variable rp+dtt /L discussed recently" should be main-
tained (and modified by rp~ rp) beyond mean field-
theory We anticipa. te that higher loops yield powers of
Inr p These re.sults suggest the introduction of
a shifted renormalized temperature variable r =Z,
x (rp rp ) with the usual bulk Z, and r„(up, L)

dtt /L +O(u p)—. We choose to determine the
O(up) term by requiring that the total coefficient
Xp(rp, L) ' of the P~ term of H~(p~)+I (p~ ) vanishes at
rp =rpc. This implies up to O(up) (and for general n)

rp, (up, L) = dh L ——,
' (n+—2)L

x Tr(81nA/8&B+0(uo ), (14)

where the matrix A is given by Eq. (7) and the derivative
is taken at p~ =0 and rp rp, . It is our conviction that
an L-dependent shift of ro can be incorporated in a fully
renormalized theory. So far we have checked the con-

with r =prp+12upM. The corresponding sum in the
case of pbc reads

(r- L) —L
—dg (

—+4 2 2/L 2) —2

with gp being the bulk-correlation-length amplitude
(equal to 1.43 A for He). Note that Xp is not the true
physical susceptibility. Therefore, T, (L) constitutes an
intrinsic semimacroscopic quantity which differs funda-
mentally from the macroscopic "pseudocritical" temper-
atures (e.g. , the position of the maximum of a thermo-
dynamic quantity) defined previously. ' In particular
our T, (L) does not scale with the bulk correlation
length. The shift T,(~) —T, (L) can be regarded as a
smooth correction to scaling which for L ~ vanishes
more rapidly than L 't". (This correction is distinctly
different from the usual Wegner corrections to scaling. )
A fully quantitative calculation of rp, itself requires a
description that includes the cutoff. Nevertheless, di-
mensional regularization can be used in determining the
shift rp (up, L) rp (up, cx).

Application of the renormalization group leads to
finite-size scaling functions F(tL 't') that depend on the
L-dependent "scaling field" ' t [T T, (L)]/T, (~—)
rather than on t [T—T,(~)] T/, (~). This implies
that T (L) should satisfy Eq. (3) rather than Eq. (2).

In order to test our theory we have performed a one-
loop calculation of the specific heat C&. The explicit
(rather lengthy) expressions will be given elsewhere. In
the application of these results we have employed an
equivalent representation of the specific heat '

C =X~+ yoX~C& which after multiplicative renormaliza-
tion is determined by the known effective renormalized
couplings y(l) and u(l). Here an appropriate deter-
mination of the flow parameter l(t, (pL ') has to be
made. As a consequence of having introduced r and
from the integration of the renormalization-group equa-
tion, the asymptotic (L '

O, t 0) scaling relation

l(t, & /L)o=(&p/L)f(L/&pt ") (16)

follows, where v is the bulk exponent. With the overall
amplitude of C identified from bulk data we arrive at a
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quantitative description of the specific heat of confined

He along the X line without further adjustments. For
simplicity we have modeled the pore geometry (of diam-

eter L) by a cube with Dbc in d =2 directions and pbc in

d —2 directions.
For comparison we have also calculated C in the case

of pbc (d =0, denoted by C~b, ). In Fig. 1 our results are
compared with the data of He in the region T~ T for
the example L =1000 A. The improvement of CDb,
(solid lines) compared to C~b, (dashed lines) is striking.
In contrast to C~b„CDb, approaches the bulk (dot-
dashed) curve from belotv —in agreement with the ex-
periment. The main part of the large reduction of the
maximum of CDb, can be traced to the enhancement fac-
tor ( —,

' ) in uo of Eq. (5). Another conspicuous
difference manifests itself in the (reduced) rounding tem-
perature' t* =[T*(L)—Tt, ]/Tq. If one defines t* to
be the temperature where the deviation from the bulk

curve is, say, 1%, then our tDb, is 2 orders of magnitude
larger than T~b„ i.e., g(tDb, ) &&L. Again this is in agree-
ment with the experimental data [Fig. 1(b)]. We con-
sider the gradual (algebraic rather than exponential) ap-
proach to the bulk curve as the reason for the previous
difFiculty in determining the rounding exponent 0. We
interpret this as a surface effect induced by the Dbc.
Note that these aspects of our theory are insensitive to
the appropriate determination of T, (L). For L =300,
800, and 2000 A we have found similar agreement be-

tween our theory (with Dbc) and experiment. Further
tests of our theory could be provided by specific-heat
measurements at higher pressures.

We may now return to Eqs. (2) and (3) by using
theoretical values for both T, and T . Then it is a direct
consequence of Eq. (16) that Eq. (3) contains the bulk
v=0.67. In order to compare the L dependence of our
T with experiment we have plotted Tt, —T (L) double
logarithmically versus L according to Eq. (2). The slope
in the range 300 A ~ L ~ 2000 A yields v=0.60, in

good agreement with the apparent exponent v=0.583
+ 0.046 of the data. This resolves an apparent failure
of scaling theory' that has been considered as a particu-
larly disquieting problem in the theory of finite-size
effects.

The theoretical absolute values of T~ —T and of the
height of the specific-heat maxima are somewhat smaller
than the experimental values. Two reasons are as fol-
lows: First, the convergence of our perturbation expan-
sion deteriorates near T and breaks down below T
[since there the codiagonal elements of A change from

O(utI ) to —1]; second, we have not yet included the
correct geometry of the cylindrical pores (L, &)L=L„—
=L~). The breakdown well below Tz was expected be-
cause higher modes become increasingly important. This
does not touch on the reliability of our results for T~ T
where the sinusoidal (lowest mode) order-parameter
profile is an appropriate approximation.

In conclusion, our findings indicate that the existing
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data on the specific heat in confined He can be recon-
ciled with the theory in a natural way provided that the
effect of realistic boundary conditions is taken into ac-
count. At the present level of accuracy our results sup-
port the assumption of ttt =0 near the walls (but certain-
ly do not exclude a small finite value I yI « I yib„tk of
the coarse-grained order parameter and the possible

10, I I I ~f I I

-7 -6 -5 -4 -3 -2 -1

log10 t

FIG. l. (a), (b) Theoretical specific heat of confined He
(system size L =1000 A) vs t =(T—T&)/T& and logtot for Dir-
ichlet boundary conditions (solid lines) and for periodic bound-

ary conditions (dashed lines). Data (dots) from Ref. 3; dot-
dashed lines (bulk specific heat) from Ref. 8. The arrows indi-

cate the reduced rounding temperature t[*,b,.
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relevance of a surface enhancement term to be studied in

a more refined theory). Our present calculation does not
yet explain the detailed L dependence of the height of
the specific-heat maximum. This may be due to the
multimode problem" that one encounters in the cross-
over to the bulk behavior below T&.

An extension of the present theory to the superfluid
density p, would be of considerable interest. More pre-
cise measurements of p, would also be highly desirable.

Finally we propose to apply our theory to the case
n 1 in order to reanalyze numerical results for the Ising
model with free edges ' ~here deviations from the
finite-size scaling prediction have also been seen. We
suggest that these deviations are in part due to effects
similar to those identified in the present paper. It
remains to be seen to what extent the Dbc of the coarse-
grained continuum model, Eq. (I), can be simulated by
lattice models with free boundary conditions.

We would like to thank F. M. Gasparini for providing
us with the data of Ref. 3 in numerical form.
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