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Refueling Tokamaks by Injection of Compact Toroids
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It is shown that transverse injection of a hypervelocity high-density spheromak plasmoid into a
tokamak plasma may be a viable fueling scheme. Three important processes occur and are discussed in-

dividually: establishment of equilibrium, slowing down, and disassembly of the compact toroid.

PACS numbers: 52.55.Fa, 52.55.Hc

Several advantages are gained by fueling directly in

the core of a fusioning tokamak plasma, varying from
more efficient utilization of DT fuel to improvement in

the energy confinement time. ' The conventional
method of fueling by pellet injection may not be ade-
quate for large hot fusion-grade plasmas because of the
demanding technological requirements needed to ac-
celerate pellets to the necessary high velocities &10
km/s. However, compact toroid (CT) plasmoids have
been produced and routinely accelerated to velocities of) 10 km/s in the RACE coaxial gun experiments of
Hammer, Hartman, and Eddeman. By virtue of their
high velocities, fueling tokamak plasmas by hyperveloci-
ty plasmoid injection has recently been proposed by Per-
kins, Ho, and Hammer as a candidate fueling scheme for
the experimental test reactor (ETR).

This Letter describes a model for the interaction be-
tween a moving CT plasmoid and a magnetized plasma
in relation to the feasibility of the scheme. We first ex-
amine how the moving CT is held fixed in equilibrium by
the background tokamak magnetic field, which is di-
amagnetically excluded from the interior of the CT. We
then estimate its deceleration time and the time to decay
by surface and volume resistive dissipation processes.
We specialize to the case of a spherically shaped CT
without the hole, i.e., a spheromak. ' For definiteness
we choose ETR parameters. The CT mass for a —10%
density perturbation (1-Hz rate coaxial injector) is
around M1-4.5 mg. Bearing in mind that the CT
must be small enough to pass through a wall aperture,
we choose a radius r 1

—10 cm, giving an average CT ion

density of n~-2x10' cm
We assume that the CT is injected with velocity V;„,I

perpendicular to the undisturbed background magnetic
field 8 z. After the CT exits the gun, it is for an instant
deconfined. Its poloidal magnetic field will then appear
to have a dipole character, with dipole moment m
-nl, r

~ /cx originally oriented perpendicular to the back-
ground magnetic field, where I, is the toroidal current in-
side the CT. As soon as the CT enters the vacuum
tokamak magnetic field region, it will begin to rotate un-
der torque mxB until the magnetic moment and B
are aligned parallel to each other. The characteristic
time constant for this being r„~, (mB /I —)' in which

I =
2 M 1r 1 is the appropriate moment of inertia. The

characteristic magnetic field inside the CT, 8 t, must be
comparable to 8 in order that the closed magnetic field
line topology remain intact. Since I, cx'rtBt, the "tilt
time" can be expressed as t&,t&-r~t=rt/VAt where

VAt =8 /(4nn~m;)' is the Alfven speed in the CT.
Taking the above parameters with 8 =50 kG gives
VAt =154 km/s and tt, l& 0.65 ps. This will be seen to
be the shortest time scale of interest here so that the
realignment of the CT with its axis of rotation parallel to
the background magnetic field occurs almost immediate-

ly after its encounter with this field. Numerical magne-
tohydrodynamics (MHD) simulations also show that the
CT tilts 90' in about an Alfven time, rAt.

In the following, we demonstrate how the CT, once
embedded inside the tokamak magnetic field, may propa-
gate across the field without expanding and stopping
prematurely. We consider the mode of propagation in

which the injected kinetic energy density at injection
exceeds the background magnetic field energy density

2 m;nt V;„,)8 /8tr. This assures penetration of the CT
through the background magnetic field which will be ex-
cluded from the interior of the CT and slip around its
periphery. Since the injection energy goes into transla-
tional kinetic energy and the energy needed to exclude
the magnetic field, the CT begins to move through the
field with initial velocity

VcTp = (V» —VA t )

As shown in Fig. 1, the final configuration is such that no
external magnetic flux links the CT region making it
possible for it to easily penetrate the tokamak plasma
region without stretching or breaking field lines. A
spheroidal current sheet appears at the boundary
separating oppositely directed tangential magnetic fields
on each side of it (Fig. 1). Since the speed of the CT is
such that VcT((VAp where VAp=(8 /4trm;np) is the
Alfven speed of the background plasma of density np, the
deformed background tokamak magnetic field Bp will

respond quickly by setting up a series of quasiequilibria
characterized by vanishing current density, VxBp=0, to
lowest order in VcT/VAp. In a polar coordinate system
(r, 0,&) with the polar axis pointing in the z direction and
origin at the center of the sphere, the resulting external
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B z

Bp

should be assured, i.e., 8|a =Boa, and expansion of the
CT should be prevented. The essential differences be-
tween CT plasmoid injection and injection of a bare
plasmoid ball without embedded magnetic fields is that
the outward pressure inside the ball being isotropic can-
not balance the anisotropic external magnetic field pres-
sure exerted on its surface. Inevitably, the bare plasmoid
will expand axially at the Alfven speed VAi lowering its
density to the point where it can no longer propagate.

To estimate the amount of drag due to Alfven wave
emission, we start by considering the magnitude of the
electric fields and plasma flows induced by the motion of
the CT across the magnetic field. We first look at the
problem in the comoving frame of reference, f', which is

instantaneously moving with velocity VcT=VpTx rela-
tive to frame f, which contains an observer at rest. The
field variables as seen in f' are related to those seen in f
by E'=E+(VcTxB)/c, B'=B, p,'=p, —(1/c )VcT J,
and J'=J p VcT

Far from the CT E 0, B B so that in the
comoving frame f' the CT appears to be immersed in a
uniform background electric field in the —

y direction:
A

V tx
FIG. 1. Magnetic field topology in the vicinity of a compact

spheromak moving in +I direction. A spheroid current sheet
(shaded circle) separates oppositely directed magnetic field

lines.

81, =2C cos8j 1 (x )/x,

8&s- —CsinHx 'd(xj i)/dx,

81,=Csin8jl(x),

(2)

where x =pr and pri =4.493 is the first zero of the
spherical Bessel function of order 1. In this problem the
current sheet replaces the perfectly conducting wall.
Since the oppositely directed tangential magnetic field

components on each side of the current sheet have the
same sinO dependence they can be made equal in magni-
tude iBisi =

i Boer over the entire surface by letting
C=6.9048 . With this normalization, the toroidal and
poloidal currents inside the spheromak are, respective-

ly, I&(A) =6.43x10 r|(m)8 (T), and I~(A) =8.036
x10 rl(m)8 (T).

Thus, once the CT is embedded in the external mag-
netic field, pressure equilibrium across the current sheet

field components are Bo, —8 (1 —
r1 /r )cos8, Boa

= ——,
' 8 (2+re/r )sine, where 8 is the assumed uni-

form tokamak magnetic field asymptotically far from the
CT. At the current sheet r =ri the external tangential
magnetic field is Boa(r =r 1 ) —

2 8 sin8.
In the interior CT region, the magnetic field 8 i is as-

sumed to have the force-free Taylor configuration
VxBi =pB|, with the current density being Jl =pB|/po.
The classical spheromak solutions for a vanishing radial
component on a conducting wall placed at r =r

i are

IV(y) =Q(y)/P(y), U(y) =~(y)/P(y),

p(y) =(
i vy i ), Q(y) =(v'y),

R(y) =((r'sine) '),

(6)

E' —VcTB y/c.

Since the CT may be regarded as a good conductor, it
excludes all external fields; i.e., inside the CT B'=Bl
and E'=0. In the region outside the CT there is no elec-
tric field along the magnetic field lines because of the
high background plasma conductivity parallel to the field
lines. All field variables are time stationary in f' so that
we can write E'= —V@. It is convenient to express the
electric potential @ in terms of the two independent vari-
ables y and p since 4(y, p) automatically satisfies the
condition E' B0=0. Polarization surface charges devel-

op on the surface of the CT in order to have zero electric
field inside and a volume charge density p,

'
develops in

the background plasma to cancel out parallel electric
fields induced by these surface charges. Since charges
cannot move across magnetic flux surfaces, the charges
within a flux tube become reshuNed keeping the total net
charge zero, i.e.,

r +ao di I 04 —oo
0

where the integral over dl is a line integral along B0.
This constraint together with the Maxwell equation

p,
' =(V E')/4x allows us to construct a partial dif-

ferential equation for the potential @(y,p)

tl &
2

+ W(y)+U(llr)
2

=0, (5)
y2 tip $$2

where we have introduced the following designations:
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and the angle brackets stand for f + . . .dl/Bp.
We next expand d&(y, p) in the form

away is approximately P =22rricE~b„/4rr or

Pru 2 r I 8~VcT/VAo. (10)

H ( ) =C / +C ( /2}
m P m P m P

lim
(9)

where n —=(I+ m)/2. From Eq. (3) it can be seen
that the far field solutions must match to the asymptotic
value of the electric potential @ (yVCTB )/c for large
r. Since y can be expressed in polar coordinates as
y=rsin8sinp, it can be written as y =(2/8 ) '/ y'/ sing
for large y. After comparing this with Eqs. (7) and (9),
we see that only the m =1 solutions are acceptable, viz. ,

Cm =0 for m&1. The solution that decays as y~ ~ is
also unacceptable because it connects to the correspond-
ing near-field solution which blows up as y 0.

Hence the electric potential in frame f' has the form

4(y, p) =H~(y)sing. In frame f' the plasma flows are
perceived to be caused by the drift motion in f',
v' = (E'x Bp)c/Bp . Note that on the spherical CT
boundary the flows are purely azimuthal. At infinity
they approach the expected uniform behavior
U' — —VcTx. In the rest frame f the plasma flow is
given by v=v'+VcT which is also consistent with the
frozen flow condition for low-frequency disturbances,
E+vx Bp/c =0. By this method, the electric field F. in f
can be determined near the CT and since it is localized
and of the form E=E(x —VCTt, y, z), it is seen to be in

contact with successive flux tubes for a period -r i/VCT
A pulse of this duration excites Alfven waves having a
characteristic frequency c-p2 V2zcTr/i. Near the surface
of the CT the magnitude of E is roughly E—F~—VcTB /c. It therefore serves as a boundary condition
for the electric fields of the Alfven wave which radiate
outward along the magnetic field lines with velocity VAp.

The parallel wavelength of the disturbance is therefore
( VAo/VcT)r 1 ~ Typically ki is I to 2 m which is con-

siderably smaller than the tokamak connection length
-2zqR which for ETR is tens of meters. Hence the
outgoing Alfven power is effectively radiated to infinity.
Since the oscillatory magnetic field of the Alven wave is
b„—(cki/pi)E~, , the total Alven wave power radiated

C (y, y) = g H (y)sinmy,
m 1

and substitute into Eq. (5) to obtain a differential equa-
tion for the individual H s. With the transformation
H (y) =G (y)exp —

—,
' fWdy this is

d G /dy —(2 dW/dy+ —,
' W —m U)G =0. (8)

Because of the extremely complex nature of the W, U
functions, a complete solution of Eq. (8) is evidently
difficult. Asymptotic solutions of Eq. (8) far from the
CT can be found by taking the limiting forms of 8'and
U for large y, i.e., W(y) y ' and U(y) (4y )
to yield two linearly independent solutions:

It is worthwhile mentioning that the result (10) is a fac-
tor of —,', smaller than a calculation of Barnett and Ol-
bert, ' who considered the drag on a moving spherical
conducting body across a magnetized plasma. However,
their approach was different because they assumed that
the sphere did not displace or deform the external mag-
netic field as is the case here. An effective wave drag
force acting on the CT is given by F„=—(P~/VcT )VCT.

An additional drag mechanism comes from the 1/R
(R = major radius) toroidal field gradient, which
causes a drag force on a spherical body given by
Fvs = —,

' (8 /R)ri xtt, where itt is a unit vector pointing
in the major radius direction.

Accordingly, the equation of motion of the CT is

dVcT
dt

~CT VA1XR+
tQP tVB

a = VcTpt
VA1 tao

2

ln 1+ VCTp tvB

tvB VA1
(12)

The penetration time is given by

VcTp tva

VA1 te
(13)

Taking previous ETR parameters with a =0.834 m,
R =3 m, and n p =10' cm gives t„=19ps, tv' =13
its, VcTO =171 km/s, V;„„=230km/s, and t~ =10.7 ps.
After coming to rest, the CT will be accelerated and ex-
pelled from the plasma by the VB force after a "dwell
time" zo =(2zv/ta/VAi) ' —l l ps. Therefore the ideal
fueling scenario requires proper timing: Disassembly
and fuel release should begin after a penetration time,
and the duration of disassembly should be much less
than the dwell time.

Next, we discuss two possible disassembly mecha-
nisms. First, the CT magnetic field is annihilated by dis-
sipative magnetic merging processes occurring at the
thin field reversal layer on the surface of the CT. It fol-
lows that the fluid in this layer is subjected to a pressure
of 8 /82z, and is squeezed out with velocity VAi along
the layer, and ejected at the location of the poles into the
external plasma as fresh fuel. This process leads to a
shrinkage and decay of the CT. To understand and esti-

where z =, z]A( n/ni)p' and zvtt= —,'R/VAi are the
two characteristic slowing down times. The initial veloc-
ity, VcTp, is determined by the requirement that the final
velocity be zero at the desired fuel deposition point.
Taking this to be the magnetic axis of the tokamak hav-

ing minor radius a, and assuming zvs, z, and VAi
remain unchanged along a trajectory parallel to —xz we
obtain a transcendental equation for VcTp..
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mate this process heuristically, we apply a modified ver-

sion of the early reconnection or current sheet magnetic
field annihilation models of Sweet" and Parker. ' In the
steady phase of magnetic merging the layer thickens to a
value i5=ri/pcvt by striking a balance between magnetic
flux diff'usion and convection: vi being the surface col-
lapse velocity and g the resistivity. Equating the mass
flow rate into the layer 4zripjv& to the outflow rate,
-2tr(i5) VAt gives another expression, vt =28 VAt/rt.
Combinin~ the two expressions for vt gives i5=(ritl/
p02VA&)

' . Using this expression for i5 gives the con-
traction rate of the CT boundary surface

Ut
—dyt/d—t =2't t V't / t t (14)

and from integrating a CT lifetime

t 11fetime =0.48@"'t'"'/ '"VA'1'. (IS)

(16)
At these high CT densities the impurity radiative cooling

Using the same parameters and using classical Spitzer
resistivity with T=2 eV [see below Eq. (6)] we get
t]'f i' = 1 3.6 ps, which is fortunately comparable to the
penetration time —11 ps.

Since the magnetic topology in this problem contains
no magnetic X-type neutral lines, the generally accepted
steady reconnection models of Petschek and others, '

which predict rapid reconnection rates of the order of
U1-0.1V Aotr more in the neighborhood of neutral lines,
may not be relevant. Fast reconnection remains an ac-
tive and controversial area. It is worth mentioning that
the current sheet model of Sweet-Parker reconnection
does not explain the rapid reconnection rates observed in

astrophysical phenomena. However, their model can be
restored if one replaces the classical resistivity with an
anomalous hyperresistivity produced by tearing mode
turbulence. ' For CT parameters, hyperresistivity and
classical resistivity are comparable for turbulence levels
of B/B-0.1, so that shorter CT lifetimes could be ex-
pected.

The second disassembly mechanism involves a cyclic
process: resistive decay of the internal CT magnetic field
followed by its recompression by the external magnetic
field pressure. During an incremental internal bt the
square of the CT magnetic field decays by the amounti' = —(2p ri/po)B bt. Imagine that after the interval
Bt the field is instantaneously recompressed up to its
original value to maintain equilibrium. By flux conserva-
tion 8(Brt ) =0, so the incremental change in the radius
is Sr t =r t bB /4B . We thus conclude that the radius
shrinks at the rate

dr i/dt = —10ri/ittor1.

rate (-n
&
) is quite large and leads to a low steady-state

plasmoid temperature, typically around 5 eV or less, giv-

ing a characteristic collapse time of -20 ps. During
collapse, density and therefore P increases until a critical

P is reached. Presumably this causes the CT to break up
and deposit its fuel.

In conclusion, the model here explores what we believe
to be the three essential physics issues facing the prob-
lem of fueling a tokamak by ejection of compact toroids.
The model is predicated on the assumption that the
closed magnetic fuel topology of the CT is held together
by the external tokamak magnetic field, excluded from
its interior, thereby forming a stable equilibrium. Ques-
tions of stability of the current sheet, Rayleigh-Taylor
instability during slowing down, and a complete solution
of Eq. (8) for the motionally induced electric field poten-
tial are left for future study.

I am indebted to J. M. Greene, R. F. Bourque, and
W. M. Nevins for helpful discussions.
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