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I, -J, Rule: A New Large-N, Selection Rule for Meson-Baryon Scattering
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Quasielastic meson-baryon scattering is reformulated in t-channel language (meson exchange) instead
of s-channel language (baryon-resonance formation), by use of skyrmion methods. A new selection rule
emerges, valid to leading order in large N, : The isospin of the exchanged state must equal its total angu-
lar momentum (spin+orbital). Difl'erences between the two-flavor and the three-flavor approach are dis-
cussed.

PACS numbers: 13.75.Gx, 11.15.Pg, 11.40.Ha, 13.88.+e

In this paper, we introduce a new large-N, selection
rule, the I, =J, rule, governing meson-baryon quasielas-
tic scattering. The derivation given here uses skyrmion
methods, which are particularly well suited to large-N,
calculations. In a parallel paper, one of us (M.P.M. ) es-
tablishes the rule in the more conventional context of
one-boson exchange. 1

As the reader probably knows, the skyrmion approach
to hadron physics entails viewing the nucleon not as a
bound state of three quarks, nor as a fundamental parti-
cle, but rather as a soliton in the effective theory of the
low-lying mesons. This approach, which is motivated

by large-N, arguments, ' yields a surprising bonus: the
emergence of a new symmetry, "K spin,

" which is the
vector sum of isospin and angular momentum:

K =I+J.

K conservation arises because the topologically nontrivial
meson configurations of minimum energy can always be
chosen so that spin and isospin indices are dotted togeth-
er, yielding a K, although not an I or J singlet (e.g. , the
hedgehog configuration in the pion field).

A relation such as (1) involves specifying a conven-
tional orientation between spatial and isospin axes. Of
course, physical quantities cannot depend on this conven-
tion. Only by integration over all possible relative orien-
tations can physical quantities be defined. As a result of
this integration, though, manifest K symmetry is lost,
while I and J conservation are regained. It is one of the
primary tasks of the Skyrme modeler to think of ways in

which the K symmetry of the underlying soliton can nev-

ertheless be exposed experimentally. Such tests are
purely group theoretic in nature, as they do not depend
on the details of the effective meson Lagrangian. They
can therefore be considered direct tests of large N, .

Meson-baryon quasielastic scattering has proved to be
a particularly fruitful place to search for "hidden" K
symmetry. Much of the work thus far has focused on
obtaining model-independent relations among the s-
channel partial-wave amplitudes. ' But recently,

/+8 @+8', (2)

where p (y) denotes a nonstrange meson of arbitrary
spin S~ (S~) and isospin It, (I~), and 8 (8') stands for ei-
ther a nucleon, with spin and isospin Ss =

2 (Se'=
& ),

or a A, with spin and isospin Ss = —', (Ss = —,
' ). A physi-

cal partial-wave amplitude in the s channel is specified
by the quantum numbers IL,L',S,S',I„J,I, where L and
S (L' and S') are the initial (final) orbital angular
momentum and total spin, and I, and J, are total s-
channel isospin and angular momentum. In order to
shorten our equations, we will let [S] stand for 25+1,
etc.

To leading order in large N„ the following expression
can be derived for the physical T matrix describing the

Donohue, in a beautiful series of papers, "' has adapted
the skyrmion formalism to describe helicity amplitudes
and differential cross sections. To his surprise, he ob-
served that his predictions simplified dramatically when
he crossed from an s-channel to a t-channel description
of total isospin. Motivated by this finding, in the present
paper we revisit the subject of partial-wave amplitudes,
but cross to the t channel in both isospin and angular
momentum. A remarkably elegant selection rule
emerges:

The only t channel -partial wave a-mplitudes that sur-
vive in the large-N, limit are those in which the isospin
of the exchanged state equals its total angular momen
turn (spin+orbital)

This I&
=J& rule not only allows for an easy rederiva-

tion of previously known s-channel results, it also enables
us to obtain predictions for more complicated processes
(such as those involving tensor mesons) for which the s
channel approach proves cumbersome. We shall see that
the rule only holds in two-flavor, and not in three-flavor,
skyrmion models.

To derive our result, we first brieAy review the s-
channel formalism, for which we need some notation.
We shall be considering processes of the type
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scattering process (2)

Tt t.'ss't, J, = g [K]([SB][SB][S][S'][K][K'] ) '

K, K,K'
r

L I~ K L' I~ K'

x ' S SB Sy "S' SB S~ 'i&JrJ't. t. (3).

J, I, K J, I, K

Here i, which, like T, is a function of energy, denotes
the scattering matrix in the unphysical frame in which

K, but not I, or J„is conserved —i.e., before the integra-
tion over orientations mentioned earlier. K conservation
in this unphysical frame is evident in the fact that the
same K appears in both 9j symbols, of which the first
contains the quantum numbers of the initial state and

the second, those of the final state. Equation (3) also in-

troduces the hybrid quantum numbers K and K', defined

by K=I&+L, K'=I~+L'. Thus K=K+S&=K'+S~.
The summation on K, K', and K extends over all values

consistent with the 9j symbols; that is, the quantities in

each row and column must sum to integers, and obey the
triangle inequality.

Although the i's can be extracted numerically from

any given effective meson Lagrangian, it is the T's that
are measured experimentally. Fortunately, for most

two-body processes, there will be more T's than i's for a

given choice of L and L'. Hence Eq. (3) implies a set of
nontrivial energy-independent linear relations purely
among the T's, the experimental validity of which serves

as a test of both large N, and hidden K conservation.
Finding these relations, however, has up to now been
rather difficult, since explicit formulas for 9j symbols are

Tt t. 'JP„J,J, = g [I,] [J,] ([Jy] [J&l [S][S'1) ' ( )
S,S',I„l,

unwieldy. Consequently the program has been carried
out for only a handful of processes: zN~ zN, zN

and ~N~ pN ' ' In all but
the last, both 9j symbols actually collapse to more tract-
able 6j symbols.

We seek to reformulate Eq. (3) with the quantum
numbers appropriate to the t-channel process

p+ P~ 8+8'.

The procedure for crossing from s-channel isospin I, to
t-channel isospin I, is well known, and involves a 6j sym-
bol. ' In order to derive the analogous prescription for
angular momentum, it is helpful to think of the scatter-
ing (2) as occurring in the extreme large-N, limit, in

which the baryons are much heavier than the mesons,
and the center-of-mass frame coincides with the rest
frames of the initial and final baryon. In this limit, the
orbital quantum numbers L and L' can be thought of as
belonging exclusively to the mesons p and y, and we can
define the total meson angular momenta J~ =S~+L and
J~=S~+L'. J~ and J~ can, in turn, be combined to form

J&, the total angular momentum of the exchanged state.
The allowed values of J, are, of course, tightly con-
strained by the static baryons: if 8 and 8' are both nu-

cleons, then J, =0 or I; if 8 is a nucleon and 8' is a 5, or
vice versa, then J, =1 or 2; while if 8 and 8' are both
h, 's, J, =0, 1, 2, or 3. With proper attention paid to the
phase factors introduced when changing bras to kets, '

one finds that recoupling the angular momenta in this
manner is straightforward, and involves a product of
three 6j symbols.

Altogether, the full I, If, J, Jf crossing relations
are given by

It + Is+it +ls+Sp+Sy+S+S'+lp+ I

Sg
x1

r

Sg If SP SP Jt Js Jy S9 Js J~ Sg

J J
We should emphasize that this formula has nothing to do with the Skyrme model per se; it simply summarizes the
Clebsch-Gordan manipulations involved in passing back and forth from an s-channel to a t-channel description of the
collision, in the limit that the baryons are considered infinitely heavy.

If we apply Eq. (5) to the Skyrme-model expression, Eq. (3), and carry out the indicated sums with the help of some
standard identities, we then obtain our main result':

Ttt. 'JrJ~/, Jg ~l J, [([SB][SB][Jy] [Jv] ) I[ (]]

x g ( —l) ' " " [K]([K][K'])'"
K,K,K'

J~ I~ K J~ I~ K J~ I~ K

I J J (6)

The Kronecker 6 embodies the I, =J, selection rule stated earlier.
We make the following remarks.
(i) Although, for mathematical elegance, Eq. (6) has been cast in terms of t-channel quantities, the skyrmion ap-

proach can only be justified in the kinematic regime appropriate to the s-channel process (2), in which a meson of ener-

gy O(N, ) scatters quasielastically from a massive [m =O(N, )], nonrelativistic baryon. Indeed, the t-channel process
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(4), which manifestly requires meson energies of O(N, ),
is exponentially suppressed in large N, (see Sec. 8.3 of
Ref. 5). Furthermore, Eq. (6), like Eq. (3), is totally in-

valid in the "soft-pion" energy regime, and can only be

expected to hold for higher energies (see Sec. 2 of Ref.
7).

(ii) If we plug specific values of I,eJ, into Eq. (5),
and use our new found result that the left-hand side van-

ishes, then the vanishing of the right-hand side repro-
duces —and gives an explicit, universal formula for—the
model-independent linear relations among s-channel
partial-wave amplitudes familiar from previous work.
For example, for zN pN, there are eight a priori in-

dependent amplitudes for each choice of L =L'» 1,
specified by I, = —,

' or —,', S'= —,
' or —,', and J, =L ~ —,

'
in

the s channel, or alternatively by (I„J„Jv)=(0,0,L),
(1,1,L —1), (1,1,L), (1,1,L+1), (1,0,L), (0, 1,L 1), —
(0, 1,L), or (0, 1,L+1) in the t channel. The vanishing
of the latter four, which have Ir&J„yields relations
among the s-channel amplitudes equivalent to those
given in Eq. (15) of Ref. 8, where they were derived
(much more painfully) from a direct analysis of Eq. (3).
The simpler example of ttN ~ zN is worked out in detail
in Ref. 1.

(iii) When all other quantum numbers are equal, the

amplitudes for pN yN, pN yA, ph yN, and

yA are predicted by Eq. (6) to be proportional to
each other, with proportionality constants simply given

by ([Sp][Ss])'/2.
(iv) Donohue's remarkable conclusion' that the tl

does not couple to the nucleon follows trivially from the
I, =J, rule. To see this, consider a process (2) to which

single-g exchange ostensibly contributes. Since the g is

a spinless isosinglet, the I, =Jr rule dictates that it be in

an S wave. But an S wave g has negative parity, and so
cannot couple to a static nucleon.

(v) Equation (6) can actually be derived directly,
without invoking the s-channel result (3), by the same
sorts of manipulations carried out in Refs. 7 and 8.

The preceding has relied on a two-flavor skyrmion
analysis. Inclusion of a third light flavor turns out to be
relatively straightforward. ' Here, because of space re-
strictions, we merely state the main findings; the detailed
derivations will be presented elsewhere. '

Let the four particles 8, 8', p, and y be in SU(3)th„„
representations R, R', R&, and R~, which we can imagine
combining into pure s-channel or t-channel representa-
tions R, or R, . The three-flavor analogs of Eqs. (3) and

(6), for s-channel and t-channel scattering, respectively,
are then given by

TLL'ss'~, &;&,'1, = X
11'1"Y

R Rp Rs ys

Sg 1 IY I",Y+ 1

[I"][K]f(dim R
KKK'

L I K
x ~ S Sg S~ ~ S' Sg

J, I" K J, I

r

R, y,
' R' R~

I",Y+1 Sgl I'Y

) (dim R') [S][S'][Kl [K']] '/'

dim R,

K'
I11'Y'I' ZKKK'LL'

K

(7)

and

TLL J& ~, „J = f(dim R) (dim R') [Jt,] [J~]] '/ /dim R,

yr Rr yr R* R'

11.Y IY I', —Y Jr0 Jr0 Sg, —1 Sg1

g ( 1 )
(Y+ 1)/2+sa+ J(+Jq+ K +/K+ K'+ L+ L[K] f [K][Ki]j &/2

KKK'

J~ I K J~ I K J~ I' Kx' jII'YI

I Jlrt Jr K S~ L K S L ' (8)

The new symbols that appear in these expressions are SU(3) isoscalar factors, tabulated by deSwart. ' The quantities

y, and y, (primed for final, unprimed for initial state) serve merely to distinguish the two 8 s that appear in 8x8. The
outer summations extend over all values consistent with the isoscalar factors. Note that the three-flavor z's have more
structure than their two-flavor counterparts.

By SU(3) invariance, Eqs. (7) and (8) are supposed to hold for any choice of (I„I„,Y, ) 6 R, or (I„I„,Y, ) E R„
respectively. Evidently the I, =J, rule no longer applies —even for processes involving only nonstrange particles—although a relic of it appears in the first isoscalar factor in Eq. (8). (It is generally true that three-flavor
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Skyrme-model predictions do not precisely reproduce
their two-flavor counterparts when restricted to non-

strange systems. ) Experimental deviations from the
I, =J, rule for nonstrange processes might therefore be
partially ascribed to the presence of a third light flavorI

The t-channel expression is nevertheless simpler than
the s-channel one, as it involves one fewer index of sum-

mation. Once again, when all other t-channel quantum
numbers are held fixed, the amplitudes for processes in-

volving decuplet baryons are directly proportional to the
ones corresponding to octet baryons, the constants of
proportionality being given this time by

R gr R* R'
( —1) '[(dim R)(dim R')]'I

For instance, when J, =1, the amplitudes for K p
K+:- and K p K+:-*,which are pure 27's in

the t channel, are predicted to be in the ratio (8/J5):2.
Further discussions of our two-flavor and three-flavor

findings will be given in due course.
This work was supported in part by National Science

Foundation Grant No. PHY-85-21588. One of us

(M.P.M.) was supported in part by an Enrico Fermi
Postdoctoral Fellowship.

M. P. Mattis, Enrico Fermi Institute for Nuclear Studies,
University of Chicago, Report No. EFI 88-44, 1988 (unpub-

lished).
2T. H. R. Skyrme, Proc. Roy. Soc. London A 260, 127

(1961), and Nucl. Phys. 31, 556 (1962).
3E. Witten, Nucl. Phys. B223, 422,433 (1983).
4G. Adkins, C. Nappi, and E. Witten, Nucl. Phys. B228, 552

(1983).
sE. Witten, Nucl. Phys. B160, 57 (1979).
A. Hayashi, G. Eckart, G. Holzwarth, and H. %alliser,

Phys. Lett. 147B, 5 (1984).
7M. P. Mattis and M. Peskin, Phys. Rev. D 32, 58 (1985).
sM. P. Mattis, Phys. Rev. Lett. 56, 1103 (1986).
M. Karliner and M. P. Mattis, Phys. Rev. D 34, 1991

(1986).
'oM. Karliner, Phys. Rev. Lett. 57, 523 (1986).
''J. T. Donohue, Phys. Rev. Lett. 5$, 3 (1987).
'~J. T. Donohue, Phys. Rev. D 37, 631 (1988).
'3C. Rebbi and R. Slansky, Rev. Mod. Phys. 42, 68 (1970).

I+I
'4Crossing phase conventions are

~
Il, ) ( —1) '(I, I, ~,

—
etc. , for SU(2), and ~RII, Y) ( —1) * (R*I, —I„—Y~,
etc. , for SU(3).

'~We known of several ways to prove the equivalence of Eqs.
(3) and (6). The simplest is to apply the inverse of Eq. (5) to

Eq. (6); one then recovers Eq. (3) using standard 6j symbol
identities [Eqs. (C.45d) and (C.41) of A. Messiah, Quantum
Mechanics (Wiley, New York, 1958), Vol. 2, appendix Cl.

' Pseudoscalar-meson-baryon scattering in three-flavor skyr-

mion models is explored in depth in Ref. 9.
' M. Mukerjee and M. P. Mattis, Enrico Fermi Institute for

Nuclear Studies, University of Chicago, Report No. EFI 88-
46, 1988 (unpublished).

'SJ. J. deSwart, Rev. Mod. Phys. 35, 4 (1963).

1347


