
VOr UME61, NUMOFR 12 PHYSICAL REVIEW LETTERS 19 SEPTEMBER 1988

Action Principle and Partition Function for the Gravitational Field in Black-Hole Topologies
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Statistical mechanics of gravitational fields describing the black-hole topological sector, and the
correspondence to thermodynamics, are considered. The Euclidean action is evaluated on the constraint
hypersurface and a measure is obtained, resulting in a path-integral form of the canonical partition func-
tion. We obtain the usual black-hole entropy plus quantum corrections when the temperature and size
of the system are appropriate. Under other conditions, we give evidence for the existence of a phase
transition (change of topology).

PACS numbers: 04.60.+n, 05.20.—y, 97.60.Lf

Recently there has been considerable progress in

showing that black-hole thermodynamics can be derived
from the statistical mechanics of the relevant gravita-
tional fields. Zurek and Thorne' gave a statistical argu-
ment consistent with the Bekenstein-Hawking formula
for the entropy SzH of a black hole. Making explicit use
of the boundary conditions of the canonical ensemble,
one of us showed that thermodynamically stable black-
hole solutions of the Einstein equations do exist. This
result led to a successful treatment of an idea proposed
by Gibbons and Hawking to use the classical Euclidean
action of black-hole solutions to obtain a "zero-loop" ap-
proximation to the partition function. Braden and the
present authors then obtained in the same approxima-
tion a well-behaved expression for the density of states of
the gravitational field in black-hole topologies.

In the present paper we go beyond the previous works,
which all relied explicitly on properties of the classical
black-hole geometries. We consider all regular spheri-
cally symmetric spacetimes of suitable topology in a cer-
tain class specified in detail below. Almost all of these
geometries fail to satisfy the Einstein equations by a
wide margin. We are going to include their efl'ects in

constructing a partition function for the fixed "single-
black-hole topological sector. " The ensemble is specified
by the area 4xrq of the "box" with a black hole at the
center and by the inverse temperature P at r =rtt. In the
Euclidean description adopted here, the four-geometries
have topology R x S, boundaries S ' x S2, and Euler
characteristic X =2. We construct a "reduced" Euclide-
an action I+ for these geometries by eliminating the con-
straints in the Euclidean action. The remarkable form
assumed by I+ suggests a measure and enables us to for-
mulate the partition function Z effectively as a function-
al integral. This particular Z can be evaluated as an or-
dinary integral and is finite even though the number of
four-geometries being summed is roughly as large as the
number of smooth single-valued functions on a disk in

R . [We use units in which ka =c =1. The Planck ra-
dius is rp=(GA)'I and the Planck mass is Mp

=(trt/G) '" ]
We adopt for the black-hole geometries metrics of the

form

ds =U(r, y)dr +V '(y)dy +r (y)dA,

where the radial coordinate y C [0, 1] and the Euclidean
time r has a period 2tr. U is a periodic in r and has a
prescribed constant value Uz at the boundary y =1, as
does r(1)=rtt. The three-geometry of the boundary is

thus fixed and related to the boundary conditions of the
canonical ensemble by

+2n
PA = U' dr=2 U' (2)dp

where P is the inverse temperature at the boundary of
prescribed area Att =4trrtt. The "center" of the geom-
etry at r(0)—:r+ is required to be regular. Thus, for
each y-i plane to be smooth in the product manifold, we

impose

[v'"(U'")'] =1 (3)

where a prime denotes differentiation with respect to y.
In addition, to distinguish in (1) "hot flat space"
(S'xR ) from the black-hole sector, we examine the
Euler characteristic of the four-geometry, which in the
present case is given by

2[V'"(I '")'(1 —V)],, o =2[1 —V(O)].

The equality in (4) follows from (3) and we have defined
V=V(r') . Black holes have the Euler characteristic
I=2, from which (4) yields the requirement V(0) =0 in

the black-hole sector.
With the three-geometry of the boundary i9M fixed,

the appropriate action is

I=— ~, ]i2~4.+ (Z Zo) y'I2d'x, —
16~G ~ ~ g~G a~

(5)
where y;, is the metric induced on BM, IC is the mean ex-
trinsic curvature of 9M, and E is a constant chosen to
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make the action of hot flat space with the given bound-

ary BM equal to zero. The action (5), when evaluated
for the metric (1), can be varied with respect to r, U, and
V and one obtains the correct Einstein equations for (1).

In performing a path integral based on the action (5),
one wishes to enforce the constraints. We choose to
solve the constraints constructed from the metrics (1)
explicitly and incorporate the results directly into the ac-
tion (5), producing in this way a "reduced action" I~. A
path integral using I+ will then involve only those his-
tories that stay on the constraint hypersurface of the
gravitational phase space.

For metrics of the form (1), the momentum con-
straints for i=const slices are trivially satisfied. The
Hamiltonian constraint is

A

with solution V =1 —Cr '. The "constant of integra-
tion" C is identified as r(0) =r+ from the previously
noted requirement X=2. The parameter r+ indicates
the size of the horizon of the black hole. (For example,
r~ =2GM for a Schwarzschild black hole. ) Because r+
arises in solving the Hamiltonian constraint, it can easily
be written as a functional of the three-geometry on
r =const slices.

The metric (1) is now reduced to the form

U 4r+ [(1 —-r+/r)+a(1 —r+/r) + ] (8)
y~ P

where a is a constant. From (7) and (8), a computation
of the Einstein tensor shows that the only nonzero com-
ponents in the limit y~0 are Ge =G~~ 3a(4r+)
which we can regard as representing quantum (tangen-
tial) stresses within the surface of the black hole.

The reduced action I~ is obtained from (5) and (7).
Because the Hamiltonian constraint has been eliminated,
the essentially arbitrary function U does not enter I+ ex-
plicitly. Recall that E= —g 'i (g'~ V'i )' refers to the
hypersurface y =1 and that EC = —2' '. The result
has the remarkable form

Ig = (PE —zr + /r p ) 6, (9)

where E=G 'rs[1 —V (1)] is the energy of a
geometry with gravitational radius r+ and the second

ds =U(r, y)dr

+(1 —r+/r) '(r') dy +r (y)dA, (7)

in which radial gauge invariance (i.e., an essentially ar-
bitrary relation between y and r) is manifest. A point of
particular interest is that U = (lapse function) is an ar-
bitrary positive function of i and y, periodic in r, except
that it must take the fixed boundary value Us at y =1
and that its behavior near the origin is fixed, as we infer
from (3) and from the form of V. Near y =0, or r =r+,
we can write

Z =g;e ' =g~g(E)e ~ =„e ~ dN(E), (lo)

where i labels states and g(E) denotes the multiplicity of
energy levels E. In the last equality we have assumed a
continuous energy spectrum with measure dX in energy
space. In accord with the semiclassical limit of the
discussions in Refs. 1 and 5, we take dN(E)

term contains the corresponding entropy S~H. Thus the
reduced action does not have the form "pE" that one
would expect for a single state of energy E. The entropy
term reveals the presence of a large number of degrees of
freedom associated with any value of r+. Arguments in

which SBH is obtained as the logarithm of the number of
quantum states accessible in building a black hole, ' or as
the logarithm of the density of states, have been given
for black holes that satisfy the complete set of Einstein
equations. Here, of course, only the constraint equations
have been used. Furthermore, in (9) p, ra, and r+ are
independent variables, while for the Schwarzschild solu-
tion they are necessarily related by the Hawking temper-
ature formula.

If we divide (9) by P, we obtain the "generalized free
energy" posited on physical grounds in Ref. 3. Here, we
have derived that result from the action evaluated on the
constraint hypersurface of the gravitational phase space.
One finds that if ra ~ (3J3/8x)ph, 1~ has two station-
ary points with respect to variation of r+, which is the
only remaining degree of freedom, and at both of them
the Hawking temperature formula ApH(r~) =4zr~
x (1 r+/rs) ' h—olds. One stationary point corresponds
to thermodynamically unstable equilibrium, while the
other corresponds to equilibrium that is locally stable.
In Ref. 3, these stationary points were tacitly identified
with the unstable and stable Schwarzschild solutions, re-

spectively, but the result is actually more general. Each
stationary point represents an infinite number of equilib-
rium spacetimes in which Hawking's temperature formu-
la holds, but which are all foliated diA'erently because of
the freedom in choosing the lapse function. Only one
such choice of the lapse at each stationary point would

reproduce a Schwarzschild solution, but such a choice is
in no way singled out by the reduced action. This wild-

ness in the time slicing expresses strongly that the ab-
sence of order in gravitational thermal equilibrium is
more radical than that of ordinary thermal equilibrium.
In the later case, equilibrium is thought of as occurring
in spacetime. In the present case, the concept of space-
time is merely heuristic.

If ra=(27/32m)ph, the value of I+ at the locally
stable stationary point vanishes, a fact that will be of
great interest below. If rg ((343/8z)ph, then I~ has
no stationary points. In Fig. 1, we see that while I is
not always positive, it is bounded below for every finite
choice of p and rq

We now examine the partition function, which is
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FIG. 1. The reduced action as a function of x =r+/rrr for
several values of rr=/3h/4rrrrr. Curve a (a=0.433) has no sta-
tionary points. Curve b (o =2/3 J3 =0.385) has two coincident
stationary points, while curve c (o =0.337) has a distinct local
minimum. For these three curves, the global minimum at x =0
dominates the partition function. Curve d (o = » =0.296) has
a local minimum with zero action. For curve e (o =0.232), the
local minimum dominates the partition function.

=d[expSaH(E)]. The integral in the last part of (10) is
then over exp [ PE+ SaH (E—)] with measure dSaH.
Now we observe that, precisely because of the form (9)
of the reduced action for any of the geometries (7) in the
black-hole topological sector, we are able to write (10)
as

Z =„exp( I+/h)dSa—H. (il)
The partition function is expressed as a Euclidean func-
tional integral with measure p =SaH=rrr+/rp deter-
mined by the metric only at the "center" point of the
manifold, i.e., at y =0 where r(0) =r+, so that the func-
tional integral reduces to a single ordinary integral. We
write (11) in terms of the dimensionless variables
k =4rrrlr/r p, O'

=PA�/4rrrrr,

and x =r ~/rg. Then
SgH =

4 kx and we obtain

f 1Z= —,
'

at) dxxexp( —
A. [a[1 —(1 —x) ' ] —

—,
' x ]). (12)

From the partition function we can obtain the entropy
SGF of the gravitational field in the black-hole sector us-

ing Sop = lnZ —o(|1/|)o) lnZ. Whenever cr ( 2'7, we

find that the stable stationary point xp dominates Z. At
such a point, cr =xp(1 —xp) '/, 1 ~ xp) —', , and

Ig (xp) (0. Writing x =xp+ w and expanding through
quadratic order in ~, we evaluate Z in terms of xp and
corrections obtained from the Gaussian integral in ~.
The result contains quantum corrections to SBH evalu-
ated at xp, namely,

' [/2

Sop= 4 )jxo+1n(2rrk)' xp
3xp 2

xp(1 —xp)—1 —3 . (13)
(3xp —2)

The second term is the most important correction to
SaH(xp) when, as we assume, ra and P are greater than
the corresponding Planck values. In this case SgF & SgH
as one might have expected. Qualitatively similar results
hold for any nonexponential measure p(r+). However,
below we obtain a result particular to the choice
p=Sg

We now turn to the cases in which Z is not dominated

by the local minima of I+. If cr & (2/343), then I+ has
no stationary points and points near the origin in Fig. 1

dominate Z. But these points do not describe thermal
equilibrium as it is normally understood, precisely be-
cause they are not classical stationary points of the ac-
tion or the free energy F (F= —P

' lnZ); in fact, we ex-
pect that the correct physics will be described in another
topological sector, as we discuss further below.

More interesting are the cases in which local minima
of I~ exist but are not negative. These occur when

(3J3/8rr)Ph ~ re ~ (27/32rr)PA, or 2/3 J3~ o ~ —,', .
Despite the continued existence of locally stable equili-
bria in this range, we will see that in the black-hole sec-
tor, Z already becomes dominated by points near the
origin —tiny nonclassical black holes surrounded by
"quantum geometry" —when the local minimum of I+
becomes slightly positive. To see this, it is convenient to
change the integration variable in Z from x =r+/rs to
the dimension less energy e =GE/rq = 1 —(1 —x ) '

The positive root is taken so that e has the range [0,1].
We have p =SaH = —,

'
A. e (2 —e) and

Zsp (8)=,'& (3rrl ) ' exp( -,
' XB). (is)

On the other hand, the contribution to Z from points
near the origin t. =0 is easily seen to be

Zp=2/Acr =8rr/P Mp, (i6)
for any o not close to zero. That Zp does not depend on
the size of the box seems physically correct because this
case deals with black holes for which r+((rp (((rg).
That Z is independent of r~ is a consequence of using the
measure p =SgH.

The contributions (15) and (16) are equal when
8=6p= —', k 'in(C/k / ), where C=25. Taking as an

example rq =1.5 km, we have X—10 and bp —10

Z =X dec(I —e)(2 —e)dp

xexp[ —X[oe —
4 e (2 —e) ]J. (14)

At a stationary point ep, one has o=ep(1 ep)(2
—ep). The case of interest is when, at its local
minimum, I+ is zero, the established reference for flat
space; this occurs for op= 3 and a= 2'7. To explore a
neighborhood of this point, we set op= 3 +8, and thus
0 77 3 8, for some very small fixed B. Then the con-
tribution to Z from a stationary point in this region,
denoted Zap(b), can be estimated accurately by reduc-
ing (14) to a suitable Gaussian. We find
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A dramatic change in Z as the minimuin of I+ passes
through zero can be seen by noting that
Zsi (0)-X, Zsp(8o) -X ', and Zsp(28o) -X
Therefore, Z rapidly becomes well estimated by Zo as cr

increases through 2'7 . At the same time, the expectation
value of the energy undergoes an enormous change, from
(E)sp= 3 (rs/G) to (E)o=2P «Mp. Another
significant feature that holds when Z=-Zo can be seen

by computing the entropy. We find Sop= 21n(PMp),
which is negative. This results from the fact that when

0 ) 27 the ensemble-averaged number of stationary-
point states is actually smaller than one.

The feature we have just described indicates that for
0 + 27 a phase transition must occur. This should be a
transition to a diH'erent topological sector, so that Zo cal-
culated above would not actually describe a physical sit-
uation, for which the entropy would remain positive.
One possibility, already previously discussed, is that the
transition occurs to the 2 =0 topology corresponding to a
box filled with "gravitons, " i.e., to the hot-flat-space sec-
tor dressed with gravitational fluctuations for which the
"one-loop" action is known to be negative. (We do not
consider here one-loop perturbative calculations of the
eÃect of small fluctuations in the black-hole sector. ) But
there exists at present no proof that hot flat space is

dominant among the other available topological sectors.
The description of thermodynamic ensembles ap-

propriate to other black-hole geometries —including
those endowed with electric charge or in the presence of
a nonvanishing cosmological constant —treated in detail

by the methods of this paper, will appear elsewhere.
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