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We discuss the problem of solving large linear systems of equations that arise in lattice systems with

disorder. Three examples of this kind of problem are (i) computing currents in a random-resistor net-
work, (ii) computing the fermion (quark) propagator in lattice quantum chromodynamics, and (iii) the
discrete Schrodinger operator with a random potential (the Anderson model of localization). We show

that the algebraic multigrid is a very eH'ective way to compute currents in a random-resistor network. It
is likely that similar techniques will apply to the other problems.

PACS numbers: 05.50.+q, 02.70.+d, 64.60.Ak, 66.30.Dn

Large sparse linear systems of equations with disor-
dered coefficients arise in several branches of computa-
tional physics, and are notoriously difficult to solve. In
solid-state physics, the random-resistor network and the
Schrodinger operator in a random potential are models
of electrical conduction in composite materials and in

impure crystals, respectively. ' In elementary-particle
physics, the Dirac propagator in a random gauge field

plays a key role in Monte Carlo studies of hadron masses
in quantum chromodynamics and in most algorithms
for dynamical fermions. ' Critical slowing down is, in

general, more severe for disordered systems than for or-
dered systems, and many acceleration methods that ap-

ply to ordered systems may not apply or may work badly
for disordered systems.

Recently, Batrouni, Hansen, and Nelkin reported nu-

merical experiments using Fourier acceleration ' for
computing currents in random-resistor networks at per-
colation threshold. They found that critical slowing
down is reduced compared to unaccelerated algorithms
but is still severe. This is because the preconditioning
operator mimics the ensemble-averaged current flow in

the lattice, while the current flow in any particular reali-
zation of the random-resistor network is affected strongly

by the local and global topology of interconnections.
This reasoning suggests that an improved strategy should
take account of the topology of the particular resistor
network at hand.

The multigrid method ' is known to be an extraordi-
narily effective approach for solving large linear systems
arising from the discretization of elliptic partial
differential equations. Usually the coarse grids and in-

terpolation operators are defined geometrically, e.g. , cub-

ical (2&2) blocks with piecewise-constant or piecewise-
linear interpolation. This approach, which is suitable for
partial differential equations with smooth coefficients,
will clearly not be appropriate in disordered systems such
as the random-resistor network: Just because two sites
are close geometrically does not mean that they are close
in the topology of the resistor network and hence in volt-

age. Rather, a successful multigrid algorithm will have
to define its coarse grids and interpolation operators in

accordance with the connection structure of the particu-
lar resistor network.

The algebraic multigrid (AMG) is just such an
"adaptive" strategy. Heretofore the AMG codes have
been applied to partial differential equations with strong

jump discontinuities, but not to problems as singular as
the random-resistor network. In this Letter we show

that a standard AMG code, AMG1R4, succeeds in elim-

inating entirely (or almost entirely) the critical slowing
down in the two-dimensional random-resistor problem.
Generalizations of the AMG algorithm to the Dirac-
propagator problem"' are currently under investiga-
tion.

Our computer experiments are as follows. We work
with a two-dimensional lattice having L sites horizontally
and L+1 sites vertically. Between neighboring sites we
insert a bond (unit resistor) with probability p, all inser-
tions being independent. %'e set the electric potential to
be &=0 on the bottom row, &=1 on the top row, and

compute (tt on the interior sites (with periodic boundary
conditions on the vertical sides) using Kirchhoff's and
Ohm's laws. Two preliminary reductions are applied be-
fore solving the resulting system of linear equations.
First, we compute the "connected cluster" using a
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FIG. l. Histogram of number of iterations needed for con-
vergence on L =400 backbones.
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FIG. 3. Histogram of convergence factors for L =200 back-
bone.

modified Hoshen-Kopelman algorithm. ' A site is in the
connected cluster if there is a path of bonds from it to
the top and to the bottom. Next we compute the "bicon-
nected cluster" or "current-carrying backbone. " A bond
is not part of the backbone if for topological reasons it
could not possibly carry current, i.e., if it is part of a
"dangling end. " Tarjan's depth-first-search algorithm'
finds the backbone in time proportional to the number of
sites in the connected cluster. The central-processing-

unit time per iteration of the AMG1R4 code is also pro-
portional to the number of unknowns.

We present results for L =100,200,400 at p =p, =
2 .

We started with an initial guess of /=0 in the interior
of the lattice and iterated until the error Ile II

=—[g»«, (current loss) ] '~ ~ 10 ' . This corresponds to
a reduction in Ilell by about 13 orders of magnitude.
Such high accuracy may be unnecessary for physical ap-
plications, but it gives a better understanding of the nu-
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FIG. 2. Histogram of convergence factors for L =200 clus-
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TABLE I. Mean convergence factors for algebraic mul-

tigrid (AMG) algorithm on two-dimensional random-resistor
problem at percolation threshold, computed on either connect-
ed cluster or current-carrying backbone. Standard error is

shown in parenthesis.

ported by a Sloan Foundation Fellowship and by the
U.S. Defense Advanced Research Projects Agency.

100
200
400

Cluster

0.348 (0.002)
0.403 (0.001)

Backbone

0.264 (0.002)
0.319 (0.001)
0.362 (0.001)

merical method. Figure 1 is a histogram of the number
of iterations needed to reach this criterion, based on
1000 independent realizations. Figures 2, 3, and 4 are
histograms of the "convergence factors, " i.e., the worst-
case factor by which llell is reduced in one multigrid
iteration. More precisely, the values shown here are the
factors by which the error is reduced in the last mul-

tigrid iteration. The true (asymptotic) convergence fac-
tor is slightly higher than this, but the practically
relevant (average) convergence factor is significantly
lower. The mean (over realizations) values of this (last
iteration) convergence factor are given in Table I.

While the convergence factors increase slightly with L,
there is no evidence that they are approaching 1 as
L ~. We conclude that critical slowing down is com-
pletely (or almost completely) absent.

The total time needed to solve the L =200 linear equa-
tions on the cluster (backbone) was roughly 5.3 (1.5)
min per configuration on a Sun 3/160 work station with
floating-point accelerator and 16 Mbytes of memory.
Codes for the cluster and backbone computations are
available from us. ' The AMG1R4 code is available from
Ruge. '
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