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Universal Singularities in the Integral Quantum Hall Eff'ect
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The transition between localized and extended eigenstates in the integral quantum Hall regime is ob-
servable as a scaling phenomenon in the magnetoresistance tensor as a function of temperature and ap-
plied magnetic field strength. Field-theoretic studies on the quantum Hall effect are used to derive the
scaling functions. The scaling behavior is shown to involve only a single critical exponent (tt) which is

the ratio between the inelastic-scattering exponent (p) and twice the localization length exponent (v).
The results have recently been confirmed experimentally.

PACS numbers: 72.20.My, 71.50.+t

In a previous Letter, ' Wei et al. reported a novel re-
sult on the delocalization phenomenon in the quantum
Hall regime. Universal power-law singularities have
been observed in the temperature (T) dependence of the
magnetoresistance data taken from the lowest Landau
levels of a low-mobility InGaAs-InP heterostructure.
This experiment, which was motivated by the predictions
of the present Letter, yields important information on
the localization problem ' in the quantum Hall effect
(QHE). I will point out that the observed power-law
dependence on T is a logical corollary of the scaling
theory of the QHE and has interesting consequences
for field theory and the theory of metallic transport in

two dimensions. General scaling relations for the mag-
netoresistance and conductance will be obtained and ex-
pressed in the experimentally accessible variables of T
and magnetic field strength 8 such that the universality
statement can be further explored by the experitnents
and checked for consistency. These predictions are a
unique product of the field-theoretic studies on the QHE
and cannot be obtained by different means.

Figure 1 gives a standard phenomenological descrip-
tion of the QHE for a single Landau level. ' The ap-
pearance of large plateaus with a precisely quantized
Hall resistance p„y [Fig. 1(a)1 is usually explained on
the basis of Anderson localized electronic levels in the
spectrum of the impurity-broadened Landau level [Fig.
1(b)]. At finite T, there is a transition region where
these plateaus join smoothly and where the dissipative or
parallel resistance p„„generally becomes nonzero. In
this region, the system behaves like a metal and extended
levels near the Fermi energy are necessary in order to ac-
count microscopically for the dissipation, as well as the
changing p„s. It is precisely this metallic regime (also
regime of "delocalization" ) which plays the most funda-
mental role in the theory and which has not been sys-
tematically explored in all of the previous experiments.
Wei et al. ' discovered a remarkable result in that the
maximum slope in the p ~ curve diverges as a power law
1n T

In addition, a half-width for the p„„was introduced and
this quantity was found to vanish like

h, I(28 tx T". (2)
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FIG. l. (a) Sketch of the experimentally measured p,„a dn
p ~ for a single Landau level as a function of the applied mag-
netic field 8. (b) Density of levels at the Fermi energy EF in

the impurity-broadened Landau band as 8 is varied.

The exponent p =0.42+ 0.04 was found to be indepen-
dent of the Landau-level index. In addition, Wei et al.
reported that the second derivatives with respect to 8 in-

volve a power law with twice the value of p in the ex-
ponent.

The fact that the half-width of Eq. (2) and the inverse
of Eq. (1) are the same and shrink to zero with T can be
considered as the first experimental evidence for the ex-
istence of a singular point in the spectrum of each of the
Landau levels. This singularity at T=O occurs for a

1988 The American Physical Society 1297



VOLUME 61, NUMBER 11 PHYSICAL REVIEW LETTERS 12 SEPTEMBER 1988

specific but nonuniversal value of the magnetic field, say
B*. This result, along with the universal power-law be-
havior in T, shows the characteristics of a second-order
phase transition as predicted by the renormalization-
group theory of the QHE. I will proceed by first quoting
several quite distinct and basic features on the basis of
which Eqs. (I) and (2) can be understood. A justifi-
cation then follows as the main objective of the remain-
der of this Letter.

The experimental observations [Eqs. (1) and (2)] in

the metallic regime are a consequence of the result that
the magnetoresistance components both depend on the
parameters T and 8 only through the single variable x,
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p,p(T, B)=r,p(ir)+(c.s. ); x ee (8—8*)T (3)

where r,~ is a regular function of its argument. The ad-
dition (c.s.) summarizes all the corrections to scaling
which vanish exponentially or as a power in T. The ex-
ponent p in Eq. (3) appears through the ratio p =p/2v,
where p is the inelastic-scattering-length exponent and v

the localization-length exponent. More specifically, the
localization length g of the levels near the Fermi energy
diverges like a universal power law in B,

«=e. lB-B*
I

".

This divergence expresses the fact that at T=0 there is a
singular point (8*) in the free-electron spectrum of the
Landau level. On the other hand, at finite but low

enough T such that the thermal broadening of the
Fermi-Dirac distribution does not play a significant role,
relaxation mechanisms due to inelastic-scattering pro-
cesses have to be taken into account. These determine a
characteristic length (Thouless length ) in the problem
which behaves like

L;„(T)ec T

analogous to the theory of ordinary metallic conduc-
tors. ' Equations (4) and (5) define a natural scale for
the variable K [Eq. (3)]

The condition for metallic behavior can now be ex-
pressed by saying I

x.
I
~ 1, i.e., the mean free path be-

tween the inelastic collisions should not exceed the locali-
zation length of the levels near the Fermi energy. The
statement I x I »1, on the other hand, stands for the
condition under which the quantum Hall plateaus are
observed and will not be considered here.

For a justification and extension of these claims, we

make use of the theory of Refs. 2 and 5. This theory is

developed for free electrons in a random potential and at
T=O. The conductance parameters o,~ =p,s/(p„, +p„i, )
play the role of two coupled renormalization-group pa-
rameters and the effect of changes in the length scale L
is illustrated by the flow lines of Fig. 2. The arrows indi-
cate the direction for increasing values of the L and it is

n+1 0 e
Xg h

FIG. 2. Translation of Fig. 1(a) into the renormalization-
group flow diagram for the conductance parameters. The inset
is taken from Refs. 2 and 5. The arrows on the flow lines indi-
cate the direction for increasing length scales L. The
renormalization-group flow toward the fixed points at integer
value for the Hall conductance elucidates the quantum Hall
plateaus in Fig. 1(a) as a scaling phenomenon. The unstable
fixed point controls the universal singularities of the delocal-
ization transition. The parabolic line indicates the semiclassi-
cal value o,p(8) which serves as a starting point for scaling.
The 8* corresponds to the singular magnetic field strength at
T 0 in Fig. 1.

helpful to think of L as being the (effective) sample size.
The stable fixed points at a„~ =n, n+1 in this figure in-

dicate that the quantum Hall plateaus in the experiment
[Fig. 1(a)] should be regarded as a universal scaling
phenomenon on a macroscopic scale. In contrast, the
physics of delocalization is controlled by the unstable
fixed point at o,~ =n+ —,

' (S in Fig. 2). I will further
clarify this point by making use of the basic principles of
the renormalization group along with the topology of the
scaling diagram.

The B enters in the scaling diagram of Fig. 2 through
the semiclassically computed but nonuniversal values
cr,p(8) which are indicated by the parabolic line. These
values serve as a starting point for scaling, they are a
smooth function of B, and there is an associated ultravio-
let cutoff Lo, determined by the short-distance correla-
tions of the random impurities. The role played by the
a,~ is analogous to the role of the kinetic theory
(Boltzmann equation) in the conventional theory of lo-

calization. The only important point to be made is that
there generally exists a single value for the magnetic
field, indicated by B in Fig. 2, for which the starting
point a,~ lies in the domain of attraction (critical
domain) of the "delocalization" fixed point S. This 8*
will next be identified with the singular magnetic field
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strength which appeared in the previous discussion. I in-
troduce the scaling variables e (relevant) and cr (irrel-
evant),

Oxy n 2 ~ ~ ~xx ~xxs
1 (7)

to denote the linear environment of the unstable fixed
point . Under a renormalization-group transformation
L bL, these variables transform according to e b 'e,
a b o.. The localization length transforms as a
length such that

g(e, ~) =by(b" e, b '~).
The generalized homogeneous form of Eq. (8) implies
g= i ei 'A(i ei 'a) which is finite everywhere ex-
cept along the critical domain cr„r =n+ —,

' ." Since only
the relevant variable matters, one identifies B~8 —8*
from the starting points for scaling (Fig. 2) which then
directly leads to Eq. (4). The exponent

where 88=8 —8*. Equations (10) and (11) constitute
a formal solution of the problem stated at the outset and
can be used to discuss the leading singularities as
L ~. With the introduction of the variable rc~L 'BB,
then the asymptotic behavior can be written

~.,(L,B)=f.,(x)+O(I. "x',L. '),
x ~ I."(8 8*)—,

(12a)

which is a function of the single variable x except for the
power-law corrections. The f,lj(x) =F,p(x, 0) is identi-
fied as the symmetric trajectory between the two kinds of
fixed points in Fig. 2. The function f,~ can be obtained
as a regular power series in rc everywhere except near the
quantum Hall fixed points where the condition for the
QHE is satisfied, i.e., L & g. Using the normalization

i xi =[L/&(8)] '; one expects

v=yz
—

1 (9)
f»(x), if»(x) —f„~(~) i ~exp( —

i
x

i
")=exp( L/g), —

is predicted to be universal.
Next, it is somewhat less obvious how to relate the

conductance parameters at large length scales L to the
starting points o,p(8) at Lo. The former will be denoted
as o,p(L, B). It is clear from Fig. 2 that all of the initial
points with 8~8* will end up very close to the "quan-
tum Hall" fixed points with a„y =integer, if L is large
enough (more precisely L & g). For L finite but large,
only a small fraction cr,p(L,B=B ) does not satisfy
this condition and ends up close to the symmetric renor-
malization trajectory connecting "delocalization" fixed
points with the "quantum Hall" fixed points. It is pre-
cisely this small fraction which describes the metallic re-
gime and which is of interest to us. The problem is most
elegantly formulated by introduction of Wegner's scaling
fields' which generalize Eq. (7) to the entire conduc-
tance plane. These generalized variables e = e(cx,p),
a =a (o,&) are curvilinear coordinates adapted to the
transformation properties which are written above Eq.
(8). These variables are formally given by an infinite
Taylor series in the cr,p. The series can be inverted such
that the conductance parameters can also be expressed
as a regular function cr,&=F,&(e,a). The simple trans-
formation properties of the generalized scaling variables
can next be used to write

o,p(L, B) =F p((L/Lo) eo(B), (L/Lo) ~o(8)) (10)

Here the Oo, ao stand for the translation of starting points
o,p(8) into the generalized Wegner fields. Since both
the former and the latter functions are regular functions
of their independent variables, one can write down the
series

eo(8) =a i (88) +a2(bB) +

cro (8) =b o+ b i (68) + b 2 (M ) +

for x»1. The statement of Eq. (12a) can be directly
translated into resistances,

p,p(L, B)=r,p(x)+O(L 'x, L ), (12b)

with r,~=(f '),~. Equations (9) and (12b) reproduce
the statement made in Eq. (3), by substitution of the
Thouless length L;„(T) [Eq. (5)J for L.

The absolute scale in T for observing the basic result
of Eq. (3) is very much dependent on the microscopic de-
tails of the randomness as well as the Landau-level in-
dex. ' 3 Moreover, in comparing Eq. (3) with the experi-
mental data, it is extremely important to keep in mind
that the universality statement concerns the value for the
exponent p. The 8*, on the other hand, is nonuniversal.
For example, a slight macroscopic inhomogeneity in the
electron density across the sample will in general result
in slightly different values of 8 in Eq. (3) for the
(differently) measured p„„and p„r. Such inhomogen-
eities do not affect the power-law behavior of Eqs. (1)
and (2) but they do complicate the inversion of resis-
tances into conductances. This is one of the reasons why
the delocalization fixed points S could not be observed
more directly by plotting the experimental data as T-
driven How lines in the 0'x 0'zy conductance plane. ' Fi-
nally, the result of Eq. (3) implies that all the 8 deriva-
tives of the magnetoresistance data diverge as a power
law T with integer multiples of p in the exponent. This
prediction can be used as a further check in the experi-
ments.
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