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Coherent Backscattering of Light in a Quasi-Two-Dimensional System
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We present the first experiments on coherent backscattering of light in a quasi-two-dimensional sys-
tem, and find reasonably good agreement with a theory that accounts for small departures from strictly
two dimensions. The photon density near the sample boundaries is obtained from the angular depen-
dence of the diffusely transmitted and reflected light, and is found to be in substantial agreement with
the two-dimensional photon diffusion equation. Prospects for observing the logarithmic correction to the
optical transmission of a two-dimensional system appear encouraging.

PACS numbers: 71.55.Jv, 42.20.—y

Multiple scattering of light, the effects of localization,
and the optical Anderson transition,"? are areas of in-
tense current interest.3"2® Weak localization, the precur-
sor to strong localization, manifests itself, inter alia, in
the form of a coherent, back-directed peak superimposed
upon light diffusely scattered from a random medium. 3%
This striking phenomenon has recently been the subject
of intensive study in three-dimensional systems.3™
Here, we report the first observations of coherent back-
scattering of light from a two-dimensional (2D) system.
Using a spatially anisotropic optical diffusion constant,
we incorporate deviations from 2D into the theory of
coherent backscattering from a finite system,'® and find
reasonably good agreement with our data. From Milne
theory?’ and the angular dependence of the diffuse
scattering we obtain, for the first time, the spatial varia-
tion of the photon density near the boundaries of a 2D
system, and find substantial agreement with the two-
dimensional photon diffusion equation. Our present
samples have an effective dimensionality d =2+ ¢ =2.05,
and a transport mean free path approximately 60 times
the wavelength A =0.63 um. Under these conditions the
localization length is enormously greater than the sample
thickness s, and the effects of strong localization are
unobservable. We estimate, however, that it is feasible
to obtain //A~2, and e~6x10 ~3, which would permit
the first observations of the weak-localization logarith-
mic correction?’ to the optical transmission predicted for
a 2D system. '°

For a system to behave optically as a two-dimensional
one, it is necessary that the random walk of the multiply
scattered photon be confined to a plane. Although this
may be achieved by use of a thin sample between totally
reflecting walls, it is exceedingly difficult to fabricate the
requisite broad-band, lossless mirrors. Recognizing that
it is the random walk of the photon which must be 2D,
rather than the sample geometry, we have obtained an
optically 2D system using randomly spaced, long parallel
rods. In our case the rod length is over 10004, so that
the momentum transfer parallel to the rod axis ap-
proaches zero, and a photon injected perpendicular to

the rods executes a planar random walk.

Our samples were composed of microscopic (~5200
A) fibrils of the natural protein collagen supported by a
complex mucopolysaccharide matrix. Details on sample
preparation and characterization have been given in
another context.?® Using Mie theory and the known sys-
tem parameters,?® we calculate transport mean free
paths of 40 um for light polarized parallel to the rods (z
axis), and 85 um for light polarized in the perpendicular
xy plane. The rods were aligned by tension. In our best
sample the mean angular deviation from perfect parallel-
ism was estimated to be ¢==2°, which leads to
e=(2(sin¢))'/2=0.05, and an effective dimensionality
d=2.05.

In Fig. 1 we display far-field photographs of the
coherent backscattering. Figure 1(a) was obtained with
a stationary sample and shows the expected sample-
specific optical fluctuations®®!>!? which mask the back-
scattering peak. In Fig. 1(b), the sample was oscillated
about its long axis, thereby performing an ensemble
average which permits the coherent backscattering to be
seen as a bright vertical line superimposed upon a band

FIG. 1.

Backscattering patterns. (a) Stationary sample
displaying large-amplitude optical fluctuations which mask the
coherent backscattering. (b) Oscillating sample resulting in
ensemble averaging which reveals the coherent backscattering
as a bright vertical line. (c) Sample under reduced tension
leading to significant departure from 2D. The line of coherent
backscattering is diffused and fades out vertically into the
background.
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of diffuse scattering centered on the equator. For per-
fectly aligned rods, i.e., perfect 2D, both the coherent
and diffuse scattering would be constrained to the equa-
tor, so that the length of the line of coherent scattering
and the height of the diffuse band are due to system im-
perfections. Since the rod tilts are small, however, sub-
stantial coherence is maintained in the vertical direction,
and the line of coherent backscattering extends almost
all the way through the diffuse band. In Fig. 1(c) the
tension on the sample was partly relaxed, thereby disor-
dering the system and increasing its departure from 2D.
This leads to an increase in the height of the diffuse band
and a relative shortening of the coherent line, which may
be seen to fade out vertically.

1(gy,qx,8) =F(g;)[1 —a/s+(1/2ga){coth(gs)[1 —cosh(2ga)] + +sinh(2qa)}],

where F(g,) is the square of the rod form factor aver-
aged over ¢, a=(1+A)/, and

q=1(D,/D)gq}+(D,/D:)q?1"?,

so that the contours of constant backscattering intensity
are ellipses. Continuous photon injection all along the
incident beam path leads to a complex expression which
differs significantly from the above only at large g values
for which our signal is lost in noise. A is determined by
the boundary conditions, and, as discussed later, an ap-
propriate value for 2D is A=0.8

When Dy =D, =D,, > D,, a finite sample exhibits 2D
behavior if D,,/D, > (s/I)?, while for larger s the photon
breaks out of the xy plane and a crossover to 3D behav-
ior occurs. In general, the departure from 2D may be
characterized by e=(D,/D,,)". Important predictions
of Eq. (2) are the following: (i) scanning g, along the
equator (g, =0) yields the usual peak shape, height, and
width.*® (i) Scanning g, at constant nonzero g yields
a reduced peak height and increased peak width. (jii)
Along the meridian (g, =0), the width of a ¢, scan, and
hence the length of the line of coherent backscattering in
Fig. 1, decreases rapidly with D,.

If we define D, via the mean square distance along z
traveled in time ¢, (z?) =D,t, D, may be written in terms
of the rod tilt angle ¢, as D,=2D,( sin’p). As
D, — Dy, the system becomes the usual isotropic three-
dimensional one, the height of the diffuse band expands
to fill the whole back (and front) hemisphere, the bright
line in Fig. 1 shrinks to a point, and the contours of con-
stant coherent intensity become concentric circles. The
initial stages of this transformation are displayed quali-
tatively in Fig. 1.

In Fig. 2 we display g, scans obtained with a vertically
oriented slit centered on the equator. In comparing the
data with Eq. (2), the height of this slit was accounted
for by appropriate averaging over g,. A fit to the data
yielded D,/D,, =0.002, corresponding to € =0.05, and a
mean tilt angle for the rods ¢==2°, which is consistent

Sample imperfections cause the multiply scattered
photon to slowly diffuse out of the xy plane, leading to a
mapping of our problem onto the anisotropic diffusion
equation

? Dy 9 D @
6x2 Dx 6y2 Dx 622

(1

where p is the photon density, and the D’s are the
diffusion constants along the three principal axes. For a
slab of thickness s along the x axis with photon injection
at x =/, we obtain in the usual way®”!®!! the coherent
backscattering as a function of momentum transfer

qy,9:z,
2)

with the height of the diffuse band. In performing this
fit we also found it necessary to include a 12% g-
independent, “single scattering” term similar to that
found in all 3D experiments.*® A g, scan along the
upper third of the coherent line in Fig. 1(b) yielded a

1.6
1.4 -
1 1 1 1 ]
04 o8
12 (a) log(mrad)
> .
= Z Polarization
c
(3]
S 1.0 1 1 1
—
. O 2 10
S 1.6 T T T L
o
3} ~
= y—\\ 1
[S)
&) 4
|4 =
-°C 1 1 1 1 1 J
04 0.8 12
1ok (b) log(mrad)
Y Polariz ation
10 1 1 1 1 1
(¢} 2 4 6 8 10
mrad

FIG. 2. Equatorial line scans of coherent backscattering vs
scattering angle in mrad. In the main figures, the solid lines
are fits to Eq. (2) with dimensionality d=2.05, while the
dashed lines are for d =2. The slope of the straight lines in the
insets is —1, corresponding to the asymptotic falloff of net
coherent intensity / — 1 with the inverse of the scattering angle.
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peak-to-background ratio for z-polarized light of 1.33, in
reasonably good agreement with the calculated value of
1.36. In accord with the 2D nature of the sample, no
measurable depolarization of the scattered light was
detected.

The mean free path for y polarization is twice that for
z polarization, so that the curve in Fig. 2(b) should be
half as wide as the curve in Fig. 2(a), instead of being
twice as wide. We believe this discrepancy is most likely
due to the very long mean free path and the finite spot
size of the laser beam (0.5 mm). This effect may be ap-
proximately included by use of a value for s in Eq. (2)
somewhat smaller than the true value (0.23 mm), since
both finite beam size and finite sample thickness broaden
the curve by cutting off long light paths.*”"!' We found
that reducing s by 20% was sufficient to yield a reason-
ably good fit also for the y-polarization data. At larger
q, only short light paths are important, and as shown in
the insets to Fig. 2, the predicted 1/q falloff is found.

The value of A which enters Eq. (2) is determined by
the boundary conditions for the photon diffusion equa-
tion, and depends upon dimensionality. In 3D, the
diffusion equation yields A= %, while the Milne equation
gives A=0.7104.?" In 1D, the diffusion equation and the
Milne equation both give A=1. In 2D, the diffusion
equation gives A =rx/4, while preliminary analysis of the
Milne equation suggests A =0.8, which is the value em-
ployed here. If we expand the photon density a little in-
side the boundary as

p(x) =2 pux", (3a)
n=0

where x measures the distance from the boundary in
units of /, the angular dependence of the diffuse back-
ground scattering may be obtained from Milne theory as

15(0) =1y Y, ppn'cos™t'e, (3b)
n=0

where 6 is measured from the surface normal. Thus, a
measurement of I yields, for the first time, the spatial
variation of p near the boundaries of a two-dimensional
system.

For a source located deep inside the random medium
far from the boundary, the diffusion equation yields
po/p1 =A, while all other terms vanish. This corresponds
approximately to the case of the diffusely transmitted
light, whose angular dependence is thus predicted to be
15(0) =Io(Acos6+cos?6). In Fig. 3(a) we plot the mea-
sured data for both z and y polarizations. The calculated
curves are least-squares fits to a function of the form
I5(6) =Acos6+Bcos?6, which provides an excellent
description of the data. Within the small standard devi-
ations of the parameters, we find for both polarizations
B=1.054, implying A=0.95, so that overall, the level of
agreement with theory is reasonable.

Near the entrance face of the sample, the local rate of
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photon loss via diffusion is approximately balanced by
continuous injection along the beam path, and a more-
or-less flat photon density is expected, leading to
I1(0) =Igcos@. The experimental data are shown in Fig.
3(b). Here the straight lines are least-squares fits to
13(8) = A+ B cos@, where a nonzero value for A provides
a sensitive indicator of any curvature. For both polariza-
tions, we find that within less than 1 standard deviation
A =0, implying a very flat photon density distribution
near the entrance face, as shown in the inset to the
figure. This distribution, although in general agreement
with expectation, is rather flatter than predicted by a de-
tailed calculation. Nonetheless, our experiments gen-
erally confirm the essential validity and applicability of
the two-dimensional photon diffusion equation and its as-
sociated boundary conditions.

For the sample to be effectively 2D, one requires
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FIG. 3. Angular dependence in (a) transmission, and (b)
reflection of the diffuse scattering for z-polarized (filled cir-
cles), and y-polarized (open circles) light vs the cosine of the
scattering angle. The fitted curves are discussed in the text.
Insets: The photon density in the vicinity of the boundaries as
derived from the scattering data.
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€ <1/2s. When this is satisfied, we can expect to be able
to observe the logarithmic correction®® to the optical
transmission (A/272/)In(s/l) predicted'® for a 2D sys-
tem. Fine fibers similar to those used here, but with no
supporting matrix, are calculated to yield / =2A. A simi-
lar mean free path is also obtained for fine channels
etched through a block of transparent material. For
such samples a measurable 10% correction to the
transmission is predicted for a 100-um-thick sample if
€ <0.006, corresponding to a mean effective tilt angle of
the rods (or channels) ¢ <0.2°. It appears feasible to
meet these conditions, leading to the possibility of the
first observations of this unique effect of weak localiza-
tion of light in two dimensions.
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FIG. 1. Backscattering patterns. (a) Stationary sample
displaying large-amplitude optical fluctuations which mask the
coherent backscattering. (b) Oscillating sample resulting in
ensemble averaging which reveals the coherent backscattering
as a bright vertical line. (c) Sample under reduced tension
leading to significant departure from 2D. The line of coherent
backscattering is diffused and fades out vertically into the
background.
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FIG. 3. Angular dependence in (a) transmission, and (b)
reflection of the diffuse scattering for z-polarized (filled cir-
cles), and y-polarized (open circles) light vs the cosine of the
scattering angle. The fitted curves are discussed in the text.
Insets: The photon density in the vicinity of the boundaries as
derived from the scattering data.



