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Competition between Diff'erent Symmetries in Convective Patterns
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The transition between hexagons and rolls in convective patterns has been studied in pure water under
non-Boussinesq conditions. The transition is characterized qualitatively by shadowgraph images and
quantitatively by heat-flow measurements and a local technique based on the deflections of a laser beam.
We also show that with this local technique one can recover global quantities such as the convective heat
flow.

PACS numbers: 47.20.Bp, 47.25.QV

Patterns with different symmetries can develop in

Rayleigh-Benard convection. Under normal conditions
a pattern of rolls arises above the critical threshold.
When the convective ceil has an insulating upper
plate, ' or in binary mixtures in the Soret-driven re-
gime, a pattern of squares is the preferred structure.
Hexagonal cells can appear when the transport coef-
ficients of the fluid are temperature dependent (non-
Boussinesq conditions) or when an external modula-
tion of temperature is applied.

The purpose of the present Letter is to show experi-
mental results on the transition between hexagons and
rolls under non-Boussinesq conditions. Some experimen-
tal and theoretical analyses demonstrate the existence
of such a transition. These analyses deal often with glo-
bal characteristics of the pattern. We present in this pa-
per a quantitative analysis of the dynamics of pattern
competition, from global and local measurements.

The experiment was performed in a cylindrical convec-
tive cell of diameter D 72 mm and depth d=2.00 mm

(aspect ratio I =D/2d =18). The lateral wall is made of
Plexiglas. The inner wall is not vertical, but it has a tri-
angular ramp in order to reduce the horizontal thermal
gradients. ' The bottom and the top plates are made of
copper and sapphire, respectively. The upper plate,
which allows for optical inspection, is cooled on its top by
a circulation of temperature-stabilized water. The
copper plate has the upper surface polished to a mirror
finish and covered with nickel and gold films. An electric
resistor heats this plate. The cell is contained in a
temperature-stabilized box. This ensures a temperature
stability about + 0.001 K. The working fluid is pure wa-
ter at mean temperature of 28'C whose Prandtl number
is P =5.81. The horizontal diffusion time is
=D /4x =2.45 h.

The general features of the pattern are determined
qualitatively by a shadowgraph technique. Heat-flow
and optical measurements enable us to obtain quantita-
tively global and local characteristics of the patterns.
The optical technique is based on the deflections of a
laser beam that crosses the fluid layer. Details of this

method have been described elsewhere and applied to
measure convective motions. The actual setup allows us
to obtain, with a twelve-bit resolution, the two com-
ponents of the horizontal thermal gradient (8T/8x,
8T/'dy) measured on an array of 128x128 points on a
square area of 4.9x4.9 cm . This allows us to recon-
struct the temperature field T(x,y) averaged on the
vertical direction. The accuracy of the measurement is
about 7%, the sensitivity 10 K/mm, and the spatial
resolution about 0.5 mm.

With the aspect ratio (I =18) of our cell, the corre-
sponding critical Rayleigh number is R, =1714.' Tak-
ing the value of the transport coefficients at the mean
temperature of the cell, one obtains the critical tempera-
ture difference hT,' 12.58 K." This temperature dif-
ference is sufficient to induce variations in the thermal
expansion coefficient and in the viscosity (non-Bous-
sinesq effect). However, in the present experiment these
effects are small and can be considered as a perturbation
in the nonlinear regime, as assumed in theoretical calcu-
lations made by Busse. '

Inserting the values of the non-Boussinesq corrections
(P =2.0) in the equations of Ref. 6c, we obtain the fol-
lowing thresholds for the stability of hexagons and rolls:
t.q = —5.5x10, t.g =5.3x10, and t. H 0.18, where
e~ is the minimum value of t. =(AT hT, )/hT, for hex-—
agonal motions, t. R the minimum t. for which the rolls
are stable, and eH the maximum e for which hexagons
are stable.

The value of t.~ indicates that a region of subcritical
instability cannot be observed with the resolution of the
present experiment. The last two values limit the inter-
val in which hexagonal cells can be stable. Above eH

only rolls are stable. Between these two values, however,
hysteresis between hexagons and rolls can appear.

The critical temperature, obtained from heat-flow
measurements, turns out to be hT, =12.60~0.02 K, in

good agreement with the theoretical one. ' (In the fol-
lowing, this value will be used in the definition of e. )
Figures 1(a) and 1(b) show the shadowgraph images of
two typical patterns obtained at a=0.02 and 0.14, re-
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FIG. 1. Shadowgraph images of convective patterns. (a) Hexagonal pattern for e 0.02. (b) Pattern of rolls for e-0.14.

spectively. A transition between a hexagonal pattern
and a pattern of rolls is clearly seen. Very near thresh-
old the pattern consists of a regular array of hexagons
surrounded with some zones in which rolls seem to desta-
bilize the pattern. These correspond to zones where the
lateral boundary conditions are not compatible with the
hexagonal symmetry. It is remarkable to observe that
inside the hexagonal pattern there are no defects. This
pattern is reproducible and stationary for more than 5 rp.
Figure 1(b) shows how one set of rolls finally survives.
Indeed, the pattern is mainly formed by rolls with a very
regular orientation in the center of the cell, and with two
opposite areas of defect combinations that form grain

boundaries. Two dislocation zones where hexagons pre-
vail can also be observed. This final pattern is very simi-
lar to that obtained by some authors' in convection un-

der normal (Boussinesq) conditions. However, the pat-
tern remains stationary for more than 54z& in our case.

The deflection technique gives more detailed informa-
tion about the convective fields. For a fixed e and after a
time sufficient to stabilize the pattern, a scan is made on
the system. The horizontal temperature gradient is mea-
sured for 27 rising values of e in the interval 0.00
~ a~0.14. When the maximum of e is attained, the
measurements are repeated by decreasing e. The hor-
izontal temperature field T(r) is obtained by integration
of the gradient (8T/Bx, BT/8y). Figures 2(a) and 2(b)
show two examples of the reconstruction of T(r) in the
central part of the scanning area for a=0.02 and 0.14,
respectively. Figures 2(c) and 2(d) illustrate the Fourier
spectrum of T(r) calculated in the full scanning area.
The peaks in Figs. 2(c) and 2(d) are very sharp and
their amplitudes are comparable. This confirms that al-
most perfect patterns develop.

The nondimensional convective heat flow JV is defined
as

O(
0
C

X fmmj 25 X(mmi 25
where JV here denotes the Nusselt number. The %'1, are
the nondimensional amplitudes of the Fourier modes of
the temperature field; that is

T(r) -(h, T,(8 o) /aR, )gq%'qexp(ik r). (2)

FIG. 2. Temperature-field reconstruction from the horizon-
tal gradient. (a) Hexagonal pattern for a=0.02. The temper-
ature difference between two isotherms is 0.21 K. (b) Rolls for
a=0.14. The isotherms are separated by 0.42 K in this case.
Fourier spectra of the temperature field in the full scanning
area for the same values of c as in (a) and (b): (c) for hexa-
gons; (d) for rolls.

Here (Oo) stands for the nondimensional temperature
perturbation averaged on the vertical direction and a is a
normalization factor, introduced to satisfy Eq. (1).
These two coefficients are obtained by the application of
the normalization of Ref. 14 and the theoretical results
of Ref. 15. After some calculations the dependence of JV'

on e is determined.
This dependence is shown in Fig. 3(a). Experimental

points lie on two straight lines, one for hexagons in the
interval 0.00 ~ e ~ 0.04, and one for rolls for
0.04 ~ e ~ 0.14. (The error in these experimental points
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0.2 I I I l I I 1 I I over, the ratio between those slopes, which must be in-

dependent of I and of the errors in the vertical scale, is

)'z/yH =1.30+ 0.05 in very good agreement with the
theoretical value yg/yH=1. 294 obtained from Ref. 16.
To the best of our knowledge, this is the first time that a
global parameter (convective heat flow) was obtained
from a local measurement.

The square amplitudes, p;, of the three sets of rolls are
obtained by means of the relation

(3)

0 ~ 0
0.0 0.2

I I I I l I I I 1

-5 ' 0
0.0 0. 1

FIG. 3. (a) Nondimensional convective heat flow JV. (b)
Normalized sum of the two modes p2 and p3 at 2z/3 rad with
respect to the surviving mode pl (r [&2+&3]/2&1). The ar-
rows indicate the different evolutions of the vanishing modes

p2 p3 when e increases or decreases.

is about ~2%.) The slopes of these straight lines are
obtained from a linear best fit of these results. They are
yH-0. 86+ 0.03 and y~ 1.13+'0.02. (This fit allows
us also to verify the convective threshold obtained by
heat-flow measurements with an error he=1x10 . )
These slopes are in perfect agreement, within the experi-
mental errors, with those obtained with heat-flow mea-
surements (yH =0.89 ~ 0.02, yg 1.15+ 0.02). The
main source of error in Fig. 3(a) comes from the deter-
mination of the vertical scale. This accumulates the un-
certainties of several conversion factors of the experi-
mental system [sensitivity of the photodiodes, variations
of the refractive index with temperature, finite area tak-
en to make the fast Fourier transform of T(r), etc.].
These uncertainties give an error of about 10% in the
vertical scales in Fig. 3 and, consequently, in the slopes.

The slope values yH and y~ in the present experiment,
however, are in between those calculated theoretically
from Ref. 16 for a laterally infinite system and P =5.81
(yH =1.106, yg =1.431) and those obtained by Walden
and Ahlers' (yH =0.69, y~ =0.82) for liquid helium
(P =0.78) in a small cylindrical cell (I =4.72). More-

This sum is over pairs of conjugate peaks. It extends
over wave numbers such as k„»"—P(k„»~ k„»"+P,
where k '" is the wave vector corresponding to the max-
imum of the peak and P is twice the half-width of this
peak. In order to characterize quantitatively the transi-
tion from hexagons to rolls, we have plotted in Fig. 3(b)
the ratio r = (p2+ p3)/2&1 as a function of e on a
logarithmic-linear scale. Here pl is the amplitude of the
surviving mode and pz, &3 are the amplitudes of the two
modes (at 2x/3 rad with respect to the first one) which
finally vanish. In Fig. 3(b) the high plateau (r =1) cor-
responds to hexagons, while the transition to a pattern of
rolls is characterized as the limit r 0. From this figure
one can deduce that a transition from hexagons to rolls
(vanishing of two amplitudes) occurs between eg

(3.0~0.1)x10 and e =0.090~ 5x10 . It is

smooth and hysteretic: smooth, because the pattern of
hexagons is not suddenly replaced by a pattern of rolls;
hysteretic, because the pattern is not the same by in-

creasing or decreasing e. These transition values are
lower than eg 5.3&10 and eH 0.18 obtained from
Ref. 6c for a laterally infinite system. However, the ra-
tio eH/t. g, which is independent of the strength of the
non-Boussinesq effects, ' gives an experimental value of
eH/cz 3.0+0.27, slightly smaller than eH/ez 3.44.
Using equations (8.11) of Ref. 6c with the experimental
values of yH, yz, and eH/a~ instead of the corresponding
theoretical ones yields consistency with the decreasing of
the transition thresholds eg, eH. Shadowgraph and
deflection techniques show that the rolls normal to the
lateral walls tend to destabilize the hexagonal pattern,
thus reducing the transition thresholds. The results in

Ref. 17 and those in the present work indicate that the
role played by the lateral walls and by defects on the
non-Boussinesq convection is not yet well understood.
Our observations suggest that this role cannot be fully
characterized by global measurements (i.e., Nusselt
number), but these must be supplemented by some local
techniques. Moreover, a generalization of the theoretical
results of Busse ' to account for the dynamics of defects
on the transition becomes necessary for enlightenment on
this problem.
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