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Excitonic Stark Shift: A Coupling to "Semivirtual" Biexcitons
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The optical Stark shift of the exciton is due to a coupling between the exciton and "semivirtual" biex-

citonic states (bound and unbound). We show that at large detuning the excitonic shift is the same as

the "dressed atom" blue shift. We predict that at small detuning the exciton-exciton interaction plays

an important role and leads to an excitonic red shift at the two-photon absorption threshold when the

molecular biexciton is stable.

PACS numbers: 71.35.+z

Two years ago, Hulin and co-workers discovered ex-
perimentally' the optical Stark effect in semiconductors:
When a direct-gap material is irradiated by a pump laser
beam in the transparency region, the exciton line under-

goes a blue shift. The energy change depends on the

pump laser characteristics (intensity and photon energy),
but the most interesting property of the optical Stark
effect is that the blue shift lasts only as long as the pump
pulse, allowing optical gates as short as femtoseconds.
This effect is crucially linked to the fact that the pump
photons are in the transparency region where no real ab-

sorption occurs. In this Letter, (l) we present the origin
of the optical Stark effect: The excitonic shift, as mea-
sured by a test beam, arises from the coupling between
the exciton and all "semivirtual" biexcitonic states
(bound or unbound); these virtual states are made from
one real electron-hole (e-h) pair created by a test photon
and one virtual e-h pair created by a pump photon. (2)
We show why and when the optical Stark shift is

different in atoms2 and semiconductors: The difference
comes from the Coulomb interaction and appears only
when the detuning is small compared with the binding

energy. (3) We predict a new effect: The excitonic blue
shift observed at large detuning will become a red shift
at small detuning, if the molecular biexciton is stable.

First let us emphasize that the typical pump-laser in-

tensity used in these experiments' can be treated as a
small perturbation, since e-h bound states do exist. For
a really intense pulse the excitons disappear. As we are

interested in the excitonic shift, this Letter deals with the
low-laser-intensity limit, in which the shift can be
viewed as the effect on the exciton energy of one addi-
tional virtual e-h pair created by the nonresonant pump
beam.

Origin of the exciton Stark shift The.—various possi-
ble e-h pair eigenstates of the bare Hamiltonian H,
without the pump beam, are the vacuum I 0) with energy
Eo =0, the excitons I X;) with energy rox, the biexcitons
IXX„)with energy 2cuxx„, and so on. We loosely call

both bound and unbound e-h pairs "excitons. " Similarly
we call all two e-h pair states, bound and unbound,
"biexcitons. " When the pump beam, with frequency r0~,
is turned on, it induces, in the rotating frame, a pertur-
bation W=XU+X*Ut on H, where'

U =gk akb k=g;, y; (k-)B;

=V'i'g; f;*(r=0)B,

and X is proportional to the laser intensity. V is the
sample volume, ak and b kare the-e and h creation
operators, and B;t creates an exciton IX;) with wave

function p; (k) [or f; (r )l.
In the rotating frame, the unperturbed exciton and

biexciton energies are respectively Ex, =rox, —
roz and

Exx =2(ruxx„—ro~). In the presence of W, the vacuum

energy becomes Eo and the lowest exciton energy be-
comes Ex„sothat the shift, &ox, =(Ex, —Eo) Ex„is-
from perturbation theory (valid for k«Ex, )

1(xx. I
U'

I xi) I

' 1(o I U I xi) I

'
&ox, =X

~x, —Ex+„~x, I(x; IU'Io)'
'

(2)

This is just the excitonic Stark shift. In particular, if the Coulomb interaction is neglected, the sums in Eq. (2) (easily
performed since the eigenfunctions are plane waves) give b'rox, =2k, /Ex„which is exactly the low-intensity, or large-
detuning, value of the optical Stark shift for two-level atoms. Similarly, if the detuning Ex, is very large, all the denom-
inators in Eq. (2) are effectively equal to Ex,. The sums over the exciton and biexciton states are performed through
closure relations and one again finds brox, =2k /Ex, .

There is practical difficulty with Eq. (2), standard in many-body perturbation theory: All three terms separately

diverge with the volume of the sample V. It is physically obvious, however, that the excitonic shift should not depend on

Because the last two terms, which describe the vacuum-exciton coupling, are exactly proportional to V, they must
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disappear completely from the shift, canceled by similar
terms in the first sum of Eq. (2), i.e., the exciton-
biexciton coupling. The cancellation of diverging terms
corresponds to the elimination of disconnected diagrams
in a diagrammatic calculation of the shift.

This observation leads to a very simple understanding
of the excitonic Stark shift: It results entirely from the
coupling between the exciton and all the biexcitonic

states. We now proceed to calculate the shift and
demonstrate that it is independent of the sample volume
V.

Calculation of the shift. —As the exact biexcitonic
states are unknown, there is no hope to perform the first
sum of Eq. (2) for all detuning. One gets rid of this
problem by using the Brillouin-Wigner form of the per-
turbation theory. Equation (2) is strictly equivalent to

b~, ,
=) '[(x,

I U(E~, H) —'U'Ix, )+(x, IU'(EL, -H) 'Ulx, )+(olUH-'U'lo)].

When we note that Ucouples Ix~) only to
I 0), and that IX~) =B~t I0), it is easy to check that Eq. (3) becomes

H 2Ex, H Ex,
&x, I [8,', [U, U']] lo)+&x, I U

' U'Ix, ) —
&o I U "U'lo) .

H Ey— 0

(3)

(4)~x, —
Ex,

b'av~, =(2+a+P —y)) '/E~, .

a, defined from Eq. (6), comes from Pauli exclusion among the e-h pairs forming the excitons. P and y, defined in Eqs.
(8) and (10), come from the Coulomb interaction between excitons. All three corrections are strictly zero for nonin-

teracting electrons and holes.
(a) Writing U in terms of the 8 s and using

(s)

&0I 8 8.8p'Bq'10) =b pb q+b qb'„p 2gp'(k)—y„'(k)y,(k)yq(k),

one finds

1

The first term of Eq. (4) gives exactly 2k /E~, which is just the large-detuning behavior, as [U, U ]
=Pk (1 —akak bk bl, )—. Physically, this limit results from the fermionic aspect of the particles.

Let us now calculate the corrections to the large-detuning behavior [namely the last two terms of Eq. (4)] and identi-

fy their physical origin. In this aim, we find it convenient to introduce the operator C~, defined by [H,B~]
=EL, (B~~+C(), which describes the Coulomb interaction between excitons, as will be seen below [Eqs. (9) and (11)].
The excitonic shift can then be written

a =(0
I U(1 —8~8)') [(E~,—H)/H]U'

I
0) =2 (E~, Ex,)a;/Ex, ,

—

a; =2 gkt, p,*(k')p; (k) I p~ (k) I

(6)

(7)

(for noninteracting particles, the p's are plane waves and a=0). As the detuning E~, increases from 0 to ~, a de-

creases from a~ —2=S (in 3D)s to 0. More precisely, for E~, much larger than the exciton binding energy

e~, =Eg —to&„the high-energy unbound states contribute dominantly to a, and one finds a=4(e~, /E~, ) ' . At large
detuning, this is the leading correction to the two-level atom shift 2X /E~, .

(P) Employing the explicit forms of the interaction operator C(, one finds

P =(0
I U(E/, /H)8/C j~(E/, /H)Ut

I 0) =E/, g;J P/J/E/, E/, , .

pj =2fJ(0)f; (0) V 'd3rd r'd pd p'f~ (r' p)f~*(r —p')f~—(r p)f;(r' —p')—
x [v(r —p')+v(r' —p) —v(r —r') —v(p —p')],

where v(r) is the Coulomb interaction. As in the case of a, only the excitonic wave functions are needed to calculate P.
Since dimensionally P~ ~

—e~„onemight expect P to behave as e~,/E~, . This is indeed what is found for small detuning

E~„and so in this regime P dominates a. However, at large detuning, P- (e~,/EL, ) as Cj~Ut
I 0) =0, and a dominates

(y) In y, one has to deal with the Hamiltonian H operating on two e-h pairs. Using the closure relation for biexci-
tons, one finds

y=&o I U(E~ /H)c, [E~ l(H —E~,)]c,'(E~ lH)U'I o) =g„[E&/(E»„—E&,)] I g; y.;/E&, I
', (lo)

y„;=f;*(0)„V' d 3r d ir'd 3p d p'f
~ (r p)f; (r' —p') V'J F„—(r, r', p, p')

x [v (r —p') + v (r' —p) —v (r —r') —v (p —p') ],
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where F„is the biexciton wave function. At large Ex„y
decreases as (ex,/Ex, ), since Cr Ut

~
0) =0, and is negli-

gible compared to a. At small detuning, if the molecular
biexciton is stable, the denominator Exx, E—x, in y
gives rise to a new resonance at Ex, =2(tax, —toxx, )
which lies below the excitonic one E~, =0. At this reso-
nance, to~+cox, =2toxx, . A real biexciton is made from
one pump photon to~ and one test photon cox, . Very
close to this pump absorption threshold, perturbation
theory in the degenerate subspace made of the exciton
and the molecular biexciton gives

(12)

Ix I)

io&

(c)

The exciton line undergoes a red shift as should be seen
in materials having well-bound biexcitons. This red shift
is already apparent in Eq. (2) if one considers the

(Ex, Exx, )—' pole.
When the molecular state is not stable, one should ob-

tain in the same way a finite shift when Ex, 0, but its
precise value is much harder to obtain. As 0=Ex,
=Exx, =-Exxx, = one should do degenerate pertur-
bation theory in an infinite subspace made of the vacu-

um, the exciton, biexciton, triexciton, and so on, properly
taking into account the Coulomb interaction. One again
expects a limiting shift linear in k, with a prefactor de-

pending on the exciton-exciton interaction (the analog of
the low-detuning shift 2A, of "dressed atoms").

Physical interpretation. —The blue shift is easy to un-

derstand at large detuning, as one can neglect the
Coulomb interaction Vc,„~. One free-electron level of
the valence band is then coupled to only one free-
electron level of the conduction band by the mo-
mentum-conserving laser interaction [Fig. 1(a)]. Thus
the shift should be the same as for two-level atoms.
Since it mixes the conduction- and valence-band states,
Vc,„~is easiest to introduce if one speaks in terms of e-h

pairs. Very naively, one can say that the vacuum is cou-
pled to N exciton states while an exciton is only coupled
to N 1 biexciton states, —because of Pauli exclusion [Fig.
1(b)]. The two missing states (one for the electron and
one for the hole) give the factor 2 in the blue shift
2). /Ex, . This simple argument ignores the detailed
structure of the exciton which adds the correction a.
The Coulomb coupling between excitons pushes down

the exciton energy, and if there is a level below the oth-
ers, such as the molecular biexciton, its contribution will

dominate at low detuning, inducing finally a red shift
[Fig. 1 (c)].

The importance of exciton-exciton interaction is illus-
trated in Figs. 1(d)-1(g). Without the pump beam, a
test photon creates an e-h pair which interacts through
Vc,„~and recombines giving back a test photon: This ts

the bubble of Fig. 1(d). One way this process is affected
by a pump beam is shown in Fig. 1(e): The pump pho-
ton creates a second e-h pair and these two pairs recom-
bine in a crossed way. This class of diagrams summed to

FIG. 1. Transition (a) from the valence to the conduction
band or (b), (c) from the vacuum to exciton and biexciton
states at (b) large and (c) small detuning. (d)-(g) Electron-
hole (electron, solid line; hole, dashed line) pairs created by a

test (T) or pump (P) photon. The wavy line is the Coulomb
interaction.

all orders in k, for Vc,„i=0,gives the "dressed atom"
exact result. Vc,„~ also couples the two disconnected
bubbles of diagram 1(f). This diagram, which corre-
sponds to Coulomb interaction between excitons, does
not appear in usual exciton problems, as the second e-h

pair would also be created by a test photon, making the
contribution of order XT and so negligible. In the optical
Stark effect, however, diagrams 1(e) and 1(f) [or 1(g)]
are of the same order, i.e., XTl~, so that the Coulomb in-

teraction between excitons cannot be neglected. Since
only diagrams 1(f) and 1(g), which describe the effect of
the biexcitonic states on the exciton, enter the exciton
shift, the diagrammatic analysis confirms the origin of
the shift explained above.

State of the art.—Experimentally it has been
shown" that at large detuning the excitonic shift is
indeed proportional to ) 2/Ex, . Because of uncertainty in
the laser intensity, there is no precise determination of
the numerical prefactor. Clean measurements of the sat-
uration value of the shift for small Ex, are difftcult be-
cause the finite exciton linewidth produces real absorp-
tion. However, an excitonic red shift, induced by the
exciton-exciton interaction, should be observable in ma-
terials having stable molecular biexcitons.

A theory of the exciton Stark shift has been previously

119



VOLUME 61, NUMBER 1 PHYSICAL REVIEW LETTERS 4 JULY 1988

proposed by Schmitt-Rink and Chemla. " They attribut-
ed the effect to a Bose condensate of virtual excitons and
insisted on the "quite different character" of the Stark
shift in "dressed atoms" and semiconductors which they
assigned to the fermionic aspect of the particles. We
have shown that Bose condensation is not the origin of
the shift nor Fermi statistics the reason for the dif-
ference. Their final result 2A. fi (0)/NvE~, is nothing
other than the small-Eg, limit of our (2+a)X /Eg„
which we have shown not to be the leading term. In
effect they neglected the Coulomb interaction between
excitons which is a good approximation in usual exciton
problems but not in this one. The exciton Stark shift
comes from the coupling between the exciton and all the
biexcitonic states (bound or unbound).

If one neglects the Coulomb interaction Vc,„l,one
finds the "dressed atom" blue shift, which increases,
from 2X /E~, to 2X, with decreasing detuning Eg, .

When E~, is large compared with the exciton binding
energy, Vc,„ldoes not play any role and one again finds

the "dressed atom" blue shift 2X /Ex„which can be un-

derstood as coming from Pauli exclusion among the e-h

pairs making up the biexcitons.
For small E~„Vc,„linduces two effects: It produces a

bound state, the exciton, which (because it is not a true
boson) adds a term a to the blue shift. Vc,„lalso pro-
duces Coulomb interactions between excitons. This
leads, in material having a stable molecular biexciton, to
an excitonic red shift close to the two-photon absorption
threshold rot, + co~, =2rox~, .
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