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Possible Phase Transitions among Calabi-Yan Compactifications

Paul S. Green
Department of Mathematics, University of Maryland, College Park, Maryland 20742

and

Tristan Hiibsch '
Theory Group, Department of Physics, University of Texas, Austin, Texas 787l2

(Received 15 April 1988)

We study a wide class of complex spaces each of which may be spanned by "internal" degrees of free-
dom of certain physics models with simple supergravity in (3+1)-dimensional Minkowski space-time.
We show that there are connections among these complex spaces suggesting the possibility of phase tran-
sitions which would cause drastic changes in the physical observables of such models. The web of super-
string models so connected suggests the existence of a "unified" superstring model of which the models
studied here are special cases.

PACS numbers: 11.17.+y, 02.40.+m, 04.50.+h

there exist b2 ) +6) ~ gauge-invariant massless superfields
4 and O, the potential of which is derived to vanish to all
finite orders in string perturbation. 6 Being related to the
structure on JK, these modes are called "moduli, " but to
emphasize the fact that they are tangential to the actual
moduli space of S, we shall refer to @ and %' as "moduli
fields. " In so-called heterotic models, b2 t and bl t also
count massless standard-model families of chiral super-
fields and the number of mirror families, respectively.

In this note we wish to clarify and illustrate the fact
that, for a huge number of Calabi- Yau manifolds —of
different homotopy types and in particular many differ-
ent b2 ) and b) )

—moduli spaces are connected in the
sense that they can be identified with (partial) "boun-
daries" of one another. Since these moduli parametrize
both Calabi- Yau manifolds and corresponding super-
string models, this connectedness suggests phase transi-
tions and seems to offer a framework for analysis of this
phenomenon; a detailed and more complete study is in-
cluded in a separate project. '

We start with an example of perhaps the simplest of
these transformations, related to "contraction, " first dis-
cussed in Ref. 8. Consider a Calabi-Yau subspace of
CP x CP ', the subspace of simultaneous solutions to

At(z;w) =+O~~b„z'z z'w'=0, O,b„EC, ()
) gg)2) d e j—0 g)2) g C

where z' and w' are homogeneous coordinates of CP
and CP ', respectively.

The space of the coefficients 8 ' and 8, 6~(Af), is,
a considerably redundant deformation space for (possi-
bly singular) varieties JK, which are said to belong ( C )
to the conftguration matrix

4 3 2

Superstrings propagating in (3+1)-dimensional Min-
kowski space-time with simple supergravity are described

by certain [(I+I)-dimensional] world-sheet field theo-
ries' —myriads of which are known to exist. A subset of
the degrees of freedom of such a world-sheet field theory
spans the (3+1)-dimensional Minkowski space-time and
we refer to the remaining degrees of freedom as "inter-
nal"; the main observables of the model are then typical-
ly determined by this internal structure. Some of these
models are known to be limiting cases of others (e.g. ,

superstrings on orbifolds and on their blowups ) but it
is not clear whether such a "connectedness" exists in

general.
An appreciable subset of superstring models (i.e., clas-

sical vacua of a superstring theory) are described by
nonlinear cr models on the world sheet, where even string
tree-level results are obtained only in (various) approxi-
mation schemes. The internal degrees of freedom are,
however, known to span Calabi-Yau manifolds and also
give rise to what is recognized as gauge interacting
matter. Among superstring models with such internal
Calabi- Yau manifolds we here focus on those which cor-
respond to world-sheet field theories with (2,2) super-
symmetry, with the understanding that our results have
implications in a wider scope.

A superstring model S with an internal Calabi-Yau
manifold Af, depends on parameter 8 which parametrize
the complex structure of W. For the theories under con-
sideration, it has been proved by Tian that the space 8
of the parameters 0 is a complex manifold of dimension
b2 t(At) whose tangent space at JK may be identified
with H&

' (At). In addition, S also depends on the
(2, &)

choice of the Kahler class of JK, J(At) as a real (i.e.,(), )
self-conjugate) positive element of Hs

'
(Af, ). The pos-

sible choices for J(At) form a cone =(JK) spanned by
b t, t real parameters g.

Corresponding to p E H&
' (Af)and ter E H, s

' (Af), .
{2,&) (&, &)
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in our notation, where the first column represents
CP xCP' while the latter two display the degrees of
homogeneity of A;(z;w). For a generic choice of 8 'l's

and 8 's (i.e., for almost all choices), At is nonsingular
and has" b ~ ~

=2 and b2 ~
=66.

We can easily construct a sharper deformation space
8(A1, ) by identifying points of 8+(At, ) under the follow-

ing equivalences:

A;(z;w) =-X; A;(z;w),

A ) (z;w) =A ) (z;w) + Qk~z ' c42(z;w),

where y(4~'b and y(~)'~ are linear reparametrizations of
CP and CP ', respectively. Note that dimB+ (At) =100
but dimB(At) =100—2 —5 —24 —3 =66 =b, ,

Note next that the two homogeneous equations A;(z;
w) =0 on the two homogeneous coordinates w' and w

imply the determinant equation

0=6(z) = [A) )(z)22 2(z) —A) 2(z)Az )(z)],

A; J(z)—:[8A;(z;w)/t)wj],

A;(z;w) =A;(z';w) =A;(z;w'),
(2)

since both w' and w cannot vanish on CP'. Now,
h(z) =0 is a (nongeneric) quintic polynomial constraint
on CP and itself defines a singular variety At» E [4115].
This is seen from the fact that both A(z) and

ad (z) = [[ad I I(z)]A, ,(z) —[aA I,(z)]A, ,I(.)+(1-2)]
vanish when all four A; J (z) do. These are two cubic and
two quadric equations in CP, which generically have
solutions —36 isolated points. These are the only singu-
larities of A, ~ and each is, locally, a vertex of a cone over
CP ' & CP ', obtained by "contracting" a CP ' 6 At, and
we shall refer to+:At Ai, » as a contraction. The re-
versed transition consists of a small resolution' of each
singularity of A~ into a CP'CAt. Note that this is not
blowing up; the existence of small resolutions is an alge-
braic accident for dime =3.

It is the same 100 8(' 's and 8 's that parametrize
A(z) and therefore At», so that 8+(AI) can also be tak-
en to be a deformation space 8+(At, ») for At» Note.
that each of the equivalence relations (2) of 8+(At) in-
duces an equivalence relation for 8+(JK») so that in fact
8(At) is also a deformation space for JN»,

Finally, we observe that the equation

~(z)+S(z) =0, (3)

8(z) +8 ),g, z z z'z z', 8 ie,d, 6 C,

with 8(z) a generic perturbation of d, (z) transverse (i.e.,
normal in some suitable metric) to the space of polyno-
mials parametrized by 8+(At), describes a nonsingular
Calabi-Yau threefold At with b) ) =1 and b2, ) =101.
The parameters 8 ', 8 ) [in h, (z)], and 8 [in b(z)]
span a considerably redundant deformation space,
8+[4115], for possibly singular quintic hypersurfaces in
CP of the form (3). Quite obviously, 8+[4115]

~
a&3) =o

=8+(At»).
The transition 6':At~ At is clearly a deformation,

and the sequence of transitions
b'

not supply techniques for the analysis of a possible super-
string model S», with internal At» It w. ould certainly be
desirable to check if such a superstring model would be
consistent and if so, compute the observables and com-
pare with superstring models constructed by different
techniques. This is, however, beyond our present scope
and fortunately irrelevant for the sequel.

As a result of the identification 8+(At) =By(At»),
we may, and in fact will, regard 8+ (At )
=8~[4115]

~ eo) o. Note now that

lim Bp(At ) =By[4115]),() o.
e(3)

Moreover, since a nodal variety such as Ai~ has only a
finite set of distinct small resolutions, it follows that the
contraction + identifies the space 8(At ) of Calabi- Yau
manifolds defined by Eq. (1) with a (possibly trivial)
connected covering space of a singular subset of the
space 8[41151 of (possibly singular) quintic hypersur-
faces in CP, i.e., with a covering space of part of the
boundary of the space 8(At ) of nonsingular quintic hy-
persurfaces in CP .

We also note that the Kahler class of Al, , J(At), is
parametrized by =(A, ), a positive cone of two parame-
ters:

J(At) (IJ(CP )+(2J(CP')
while J(JK ) =g)J(CP ) [with, e.g. , the Fubini-Study

O~(M')

induces the identifications

8+(At) =8+(At») =8+ [4115] ( e(3) —o

(see Fig. 1).
The present understanding of superstring theory does

FIG. 1. Relation of moduli spaces 8+(At), 8+(At»), and
8~(Atb) c8+[4115].
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metric on CP", the Kahler class is given by
J(CP") = —,

' i 881n(l +gz z)]. It makes sense to define
:-(A~) to be lim~, o=(A). Then the model S~ is on the
boundary of both S and S but corresponds in the first
case to limiting values of the Kahler class and in the
second to limiting values of the moduli of the complex
structure.

Several remarks are now in order.
(i) The transition JR JR between two Calabi-Yau

manifolds strongly suggests a phase transition between
corresponding superstring models S S . This happens
at the critical subspace of the moduli space 8[4115], as
g(3) 0

(ii) Next, note that the polynomial deformation
method" represents p E Hb

' (alt), p 6 H&
' (A )(2, i b (2 i)

correctly and therefore also the moduli fields @ and @
of S and S, respectively.

(iii) Comparison of the defining equations suggests
that the 4 moduli fields would have to undergo a non

linear transformation in a S~S"phase transition:

[+'abc.~ de] [C abcde @(abc ' C de) +@abcde ('9

~here 4 (0 ' =0) =0.
(iv) On the other hand, the Kahler-class modulus field

which corresponds to J(CP ') would have to vanish from
the massless spectrum away from 8 =0.

(v) Furthermore, the number of matter chiral
superfields would change as well in such a transition,
from 66 27's and two 27*'s of S to 101 27's and only one
27* of S . Note, however, that the gauge group would
remain intact.

(vi) Finally, we remark on differences from the transi-
tions induced by the blowing up of the singularities of
toroidal orbifolds: There the number of moduli fields
and matter fields remains the same, but the enhanced
gauge symmetry [L: SU(3)] breaks and becomes (part
of) the SU(3) holonomy of the Calabi-Yau manifold
into which the orbifold has been blown up. In the case of
contractions (and reversely, small resolutions of singular
deformations) the geometry of the transition is complete-
ly diA'erent and the gauge symmetry remains intact while
the number of moduli fields and matter fields changes
drastically.

The transition illustrated above is easily generalized
into

E [Xll(A)+ . +A„+1)],

where X stands for any configuration matrix representing a fourfold and A s are any nonvanishing column vectors of
integers such that A (and consequently a generic JK ) is a Calabi- Yau manifold (see Refs. 7, 8, or 11 for details of this
condition). Another generalization is provided by

X QL2. . . Ln+i ~ P, E [[X]] (2Q+ 2L2+ +2L„+( ),

where X is any configuration matrix representing an
almost-Fano threefold and Q and L; are any nonvanish-

ing column vectors of integers such that sK is a Calabi-
Yau manifold. We denote by [[X]](8)the double cov-
ering of X branched over a nonsingular surface that be-
longs to [XIIB]; it follows that At is a Calabi-Yau mani-
fold.

These contractions have an important property in

common: Certain complex lines l = CP't:At are con-
tracted to singular points of JK~ which is then deformed
into A; this point of view is manifestly independent of

! particular constructions. In fact, Reid" conjectures that
a large class of moduli spaces of threefolds with trivial
canonical bundle (these include Calabi-Yau manifolds as
nonsingular Kahler cases) can be identified with a class
of subspaces of a universal moduli space.

While the existence of such a universal moduli space is
subject to a conjecture, for Calabi-Yau manifolds con-
structed as in Refs. 7 and 8, we can prove that their
moduli spaces are all connected to one another by itera-
tions of the transition (4), e.g. ,

1 2

1 2

1 2

1 2

4 11111
1 1 1000
1 10100
1 10010
1 10001

4 2111
1 1100
1 1010
1 1001

- [4115].

In fact, it is straightforward that any configuration matrix is connected, through an analogous sequence of transitions,
to the leftmost one above; thus, all configuration matrices are connected. Each arrow in the web of all such connections
represents an identification of one moduli space with a covering space of a critical subset of another (see Fig. 1) and
also corresponds to a phase transition among corresponding superstring models. We defer to a future study the ques-
tions of whether these coverings are trivial and of how Reid's conjecture should be reformulated in the event that they
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are not.
From the point of view of analyzing superstring mod-

els with internal Calabi-Yau manifolds, Reid s universal
moduli space could be a "universal parameter space" for
a "unified" superstring model (unifying corresponding
vacua of a superstring theory). Regardless of the status
of Reid s conjecture, our analysis provides connections
and suggests phase transitions among an appreciable
subset of superstring vacua, or for that matter any other
models having internal Calabi-Yau manifolds as dis-
cussed here.
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