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A new representation for quantum general relativity is described, which is defined in terms of func-

tionals of sets of loops in three-space. In this representation exact solutions of the quantum constraints

may be obtained. This result is related to the simplification of the constraints in Ashtekar s new formal-

ism. We give in closed form the general solution of the diff'eomorphism constraints and a large class of
solutions of the full set of constraints. These are classified by the knot and link classes of the spatial
three-manifold.
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Despite the failure of standard perturbative quantiza-
tions, many people have argued that quantum general re-

lativity may still exist because strong-coupling effects at
short distances contradict the assumption, which under-

lies perturbation theory, that quantum geometry may be
understood in terms of small fluctuations around a classi-
cal background spacetime. ' One approach to the investi-

gation of this hypothesis is canonical quantization, in

which the splitting of the metric into a classical back-
ground part and a fluctuating quantum part is not
made. In the canonical formulation of general relativi-

ty, for the case of closed space Z, the Hamiltonian is

weakly vanishing and in the quantum theory the dynam-

ics is expressed by the quantum constraint equations.
In this Letter we describe a new representation of

canonical quantum general relativity, called the loop rep-
resentation, in which exact, nonperturbative, solutions to
the constraint equations may be obtained. In particu-
lar, we describe here the following results.

(1) The entire space of states annihilated by the spa-
tial diffeomorphism constraints D, (x) is found in terms
of an explicit countable basis. The elements of this basis
are in one-to-one correspondence with the generalized
link classes of the 3D manifold Z. These are the
equivalence classes, under Diff(Z), the identity-con-
nected component of the diffeomorphism group of Z, of
sets of piecewise differentiable loops in Z.

(2) Among these states are some which are also an-

nihilated by the Hamiltonian constraint C (x), and are
thus exact physical quantum states of the gravitational
field. Included in these is a sector whose basis is in one-
to-one correspondence with the subset of the generalized
link classes of X which are based on sets of smooth,
nonintersection loops. These are the well studied ordi-

nary link classes, whose classification is the subject of
knot theory.

The loop representation is a development of Ashtekar's

reformulation of general relativity and is motivated by
the discovery of a set of solutions of the Wheeler-
DeWitt equation related to loops. In Ref. 7 it was first
introduced by means of a functional transform from the
self-dual representation. Here, following Isham's ideas,
we define directly the loop representation as the quanti-
zation of a suitable Poisson algebra of nonlocal classical
observables.

We proceed by describing the loop representation, we

then explain why it is a quantization of general relativi-

ty, and, finally, we describe how the solutions are found.
Let Z be a compact three-manifold, of arbitrary topol-

ogy, without metric or connection structure. Let X& be
the space of piecewise differentiable, closed, parame-
trized, nondegenerate curves in Z (called in what follows,

loops, and denoted by greek letters y, rl, . . . ) and let Atz

be the space of the (unordered) set of elements of X&
(called multiple loops and denoted [y],[ri],. . . ). Let I
be the space of complex-valued functions A[[y]] on At~

which (1) are invariant under reparametrization and in-

version of the loops, and (2) satisfy, for any y and ri with

a common base point, the equation A[yINIri]+A[@ 'f'ri]

=A[[@,ri/], where y '(s)—:y(1 —s) (s e [0,1] is the

loop parameter) and ygri is the loop made by going once
round y and then once round ri before closing. (As in

spin network formalism, this is an implementation in

the loop space of the fundamental two-spinor identity,
PBPD PDPB e eBD )

On this space S there exists an algebra of regulated
linear operators which is a representation of a complete,
observable algebra for general relativity. The algebra,
called the 7 algebra, is graded by the nonnegative in-

tegers. The zero elements are defined for every loop y by

T [y]A[[ri]]=A[yU [ri]].
These are a kind of lowering operator. For n~ 1 the

operators are denoted T, ' ' ' " [y] (s t, . . . ,s„) (a;
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=1,2, 3, s;+ e & s;+ i, e & 0) and are associated with operations in which new set of loops are made from old ones by
breaking and joining them at points of intersection. T, ' ' ' ' "[y](s|,. . . , s„) A[rl] will be zero unless ri intersects y
at all the n points y(s;). In this case we consider the 2" loops (or multiple loops&, denoted (ygrl)~, p = I, . . . , n, ob-
tained by breaking and rejoining the two loops in each of the n intersections (x ~ +, && ). Then

T, ' ' '"[y](s&, . . . , s„)A[rll=h "P ( —1) P &"" '"[Z,p](s|, . . . ,s„)~[(y&rl)~].

i p i is the number of the segments between two intersections on which an arbitrary original orientation of the two loops
has to be reversed in order to obtain a coherent orientation of (yPg)~. The coeScients 6 are defined by

These are distributional constants, which enforce the re-
quirement that the action of the operator be zero unless

q intersects y at the points y(s;). The definition of the
operators incorporates a regularization: For every e the
set of the operators T," is given by the ones in which the
points s; are at least a distance e apart in terms of the
parameter along y. The extension of these definitions to
operators depending on multiple loops is straightforward.

It can be demonstrated that for each fixed e & 0, the
T,"'s form a closed commutator algebra, which is of the
form, for n~ m,

[y'" y™) gg'Z "+ '+ $2p2Z
"+

+hngnf m

where the terms in T"+ ~ involve loops which are
formed by breaking and joining y and g at p intersection
points. Thus, the 6" defined by Eq. (1) are structure
constants of the algebra of the T,". The algebra admits a
graphical notation which allows direct computations, in
terms of breaking and joining of loops at intersection
points. The distributional singularities present in the
definition of the T„and in their algebra may be eliminat-

ed by averaging over suitable finite-dimensional spaces
of test functions. The e regularization ensures that there
are no coincident distributional singularities.

Now, what has all of this to do with quantum gravity?
It may be shown that the algebra 7' is, if we divide the
commutators by i h and take the limit h 0, isomorphic
to the Poisson-bracket algebra of a certain set of observ-
ables in the classical phase space of general relativity.
This algebra, which we will denote V', without the tilde,
is complete, in the sense that any observable is either in

it or may be expressed as a limit of sequences of its ele-
ments. The T 's are the traces of the holonomy of
Ash tekar's connection, 8, (x ),

T [y) TrPexp f/'
where P means path ordered. The T 's, being the holon-

omy of an SU(2) connection, satisfy certain algebraic
conditions at the intersecting points on the loops; the
quantum T operators satisfy the same condition thanks
to the spinor condition, above, on the loop functionals.

The higher T" are defined by our inserting, into the
loops, n insertions of the conjugate variable cr'(x). If

U„(s,t ) —=P exp „8(y(s) ),y'ds,

T, ' ' ' "[y)(s|,. . . , s„):—Tr[U„(s„,sl)cr '(y(sl))U„(si, s2)cr"(y(s2)) ).

These observables are multitensors that transform as
vector densities of weight one in each points y(s;) and
related index a;, and as scalars in all the other points
where y is.

It may be then shown that the T,"'s form a closed Pois-
son algebra, and that this algebra is related to the T
algebra by

[T,",T, ] = lim ( 6) '[T,",TP).
0

Thus, the space of loop functionals 1, together with the
T algebra, provides a representation of the kinematics of
quantum general relativity. ' Recall that a quantum
theory corresponding to a given classical theory may be
defined by a linear representation of a deformation of
any complete Poisson algebra of observables.

The constraints of general relativity, which define the
dynamics, are represented in the loop representation in

the following ways. The SU(2) gauge constraints of the
Ashtekar formalism are represented trivially, since the
algebra 7' consists of only the SU(2) gauge-invariant ob-
servables.

To define the diffeomorphism constraints we begin by
noting that the natural action (p y)(s)—:p(y(s)) of the
diffeomorphisms p E Diff(Z) on the loop space X~ (and
on Aq) induces a linear representation U of the group
Diff(Z) on the space S of the loop functionals. This is

given by

(2)
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If P, is a one-parameter group of diffeomorphisms on Z

generated by the vector field v on Z, the generators D(v)
of U are given by

D(v)A[/qj] =d—U(p, )A[[rij1/dr ~, -o;

on the domain on which the D(v) are defined (which is a
dense subset of eV) they satisfy [D(v),D(w)] =D([v,w]).
The action of a diffeomorphism on an element of 'T is

given by p T:—U(p) TU(p) '. By explicit computation
it may be shown that p. T [y] =T fp

'
y] and that

also the other T,"'s transform exactly as the correspon-
dent classical observables T,". Therefore we have two re-
sults. First, the regularization built into the definition of
the T algebra is covariant under the action of the spatial
diffeomorphisms. Second, since the D(v) have the
correct commutation relations with the observables (as
follows from the transformation properties of the T")
and among themselves, we can identify them with the
diffeomorphism constraints.

Finally, we represent the Hamiltonian constraint
through a sequence of regulated operators. In the Ashte-
kar formalism the Hamiltonian constraint has the form
C(x) Tr[F,b(x)8'(x)cr (x)], where F,b(x) is the cur-
vature of Ashtekar's connection. The presence of the
square of the field operators is a sign that the corre-
sponding quantum operator requires a suitable regulari-
zation. We recall that the holonomy of a small loop y~

of coordinate radius b in the coordinate (a, b) plane may
be expanded in 6 as 1+8 F;b+0(b ) (I is the identity).
Therefore the curvature may be defined by a suitable
limit of T 's as the loops shrinks down to a point. Simi-
larly C (x) can be expressed in terms of the classical ob-
servables T" as a limit of a sequence of observables
C (x) given by a suitable linear combination of T 's.
The details of this are described in Ref. 3. In the loop
representation we define the Hamiltonian constraint as
the limit of the quantum operators C (x). In this way
the theory naturally provides the regulated form of the
operator.

Before presenting the solutions of the quantum con-
straint equations we discuss here the relation between
the loop representation and the self-dual representation
of quantum gravity, which is defined in terms of holo-
morphic functionals of the connection 0'(A). This rela-
tion is expressed by a linear mapping from the conjugate
self-dual representation to the loop representation. The
gauge conjugate representation consists of linear maps @
from elements of the self-dual representation %'(A) to
the complex numbers, denoted &[+( )] (the Dirac
bras's). In terms of the functionals

H(/y}, A) = P( TrPexp'(~A ',

we define a mapping 9 from the conjugate self-dual rep-

resentation to the loop representation by

~ e- A[[y}]-=e[H([yj )]

This equation can be written in a more intuitive, but for-
mal, way if we introduce an arbitrary measure p(A) on
the space of connections, and so express any conjugate
element 4 as 4(A) by @[a(.)]=f dp(A)e(A)@(A).
The transform P is then expressed as

A[[yj] = d~(A)H([y},A)e(A). (3)
A

Operators in the self-dual representation, denoted 8, are
related to the corresponding operators in the loop repre-
sentation, denoted 8, by the relation 87=78 . This
will be true if

8H([y},A) =8H([y},A),
A

where 8 acts on the connection while 8 acts on the loop.
This equation may be explicitly checked for all the ob-
servables and the constraints.

The integral (3) may be explictely computed in the
linearized theory, where there is a natural choice for
p(A), and by doing so a complete representation of the
Fock space of linearized general relativity in terms of
loop functionals may be obtained. "

We may now finally discuss how solutions to the con-
straint equations are obtained. By Eq. (2) we know that,
if A[[rl}] is to solve the diffeomorphism constraint equa-
tion D(v) A [[ri}] =0, it must be constant on the orbits of
Diff(Z) in Az. Thus, if L([rij) is defined to be the
equivalence class of the multiple loop [rlj under Diff(Z)
(which we will call the generalized link class of [ri}) then
the general solution to the diffeomorphism constraints is

A[[@}]=A[L([rij)l.

For example, let P be any ordinary link invariant, 4 then
a solution to the diffeomorphism constraints is Ap[[rij]
=0 if [rij contains any intersections and, otherwise,

The solutions to the regulated Hamiltonian constraint
are defined by the condition that, for every x and every
[gj,

lim C (x)A[[rij] =0.

In Ref. 3 the following result is demonstrated. A[{ri}]
satisfies Eq. (4) provided that A[[rij] =0 whenever [ri}
involves intersections or nondifferentiable points. Thus,
there are simultaneous solutions to all of the constraints.
The Ap described above are examples of them.

While the construction of the regulated Hamiltonian
constraint and the study of its action are too complicated
to describe here, we may give a heuristic argument for
the form of its solutions based on the transform. The
key idea is that the kernel of the transform, H([y},A), is
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annihilated by the Hamiltonian constraint of the self-
dual representation whenever the curves ly} are nonin-

tersecting and differentiable. Thus an A[{ri}j with sup-
port only on diff'erentiable non-self-intersecting multiple
loops may be thought of as a superposition of states
%'(A) =H(fy},A) that solve the self-dual Hamiltonian
constraint equation. The same argument suggests that
other solutions may be given by loop functionals that
have support also on intersecting loops but satisfy the
algebraic conditions involving the intersections described
in Refs. 6 and 12.

We close with some comments. (I) It is likely that the
class of physical states so far found are only a sector of
physical space; whether or not these methods will lead to
a construction of the entire physical space is an open is-
sue. (2) Two crucial steps are missing for a definition of
a complete theory of quantum gravity. The first is the
construction of the physical inner product. For a closed
universe this problem is related to the difficulties in the
meaning of time and probability in quantum cosmology.
(3) The other is the definition of the gauge-invariant ob-
servables. Although the invariants of knot theory may
be used to construct a large class of operators on the
physical state space, the physical meaning of these
operators is unclear, as no explicit physical observables
are known for classical general relativity for a compact
universe in the absence of matter. (4) Without a solu-
tion for these two problems the physical interpretation of
the physical loop states that we have found is an open
problem. The extension of the present results to the
asymptotically Oat case, and the inclusion of matter may
throw light on these issues.
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