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Trapped Surfaces in Spherical Stars
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We give necessary and sufficient conditions for the existence of trapped surfaces in spherically sym-
metric spacetimes. These conditions show that the formation of trapped surfaces depends on both the
degree of concentration and the average flow of the matter. The result can be considered as a partial
validation of the cosmic-censorship hypothesis.
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It is a common assumption in general relativity that if
a sufficient amount of matter is concentrated in a small

enough volume the system will collapse under its own

weight. However, it is difficult to demonstrate this even

in the spherically symmetric case. It is clear that if the
Schwarzschild criterion 2M/R & 1 is violated the system
will collapse to form a black hole. This does not directly
resolve the issue, because the M in question is the total
mass which includes the negative binding energy and so
cannot be directly related to the amount of matter in the
collapsing star, while the R is the radius in Schwarzs-
child coordinates and so is a very poor measure of the
enclosed volume.

In studies of gravitational collapse the most interesting
object is the event horizon. However, this is a global
property of the spacetime and is very hard to identify in

practice. A more useful, local, property is the "trapped
surface. " This is a closed two-surface at any instant of
time which has the property that the outgoing light rays
from it are convergent. In the spherically symmetric
case the existence of a trapped surface guarantees that
the system must collapse to a black hole assuming only
that the matter has positive energy density (the weak en-

ergy condition).
One explicit formulation of the idea that matter con-

centration causes gravitational collapse is the so-called
"trapped-surface conjecture, " i.e., that a trapped surface
forms if a sufficient amount of matter is packed into a
small enough volume. In this Letter we will derive rela-
tionships in the spherically symmetric case which are
necessary and sufficient conditions for the existence of
trapped surfaces. These conditions will depend only on
the amount of matter inside a sphere and the proper ra-
dius of the sphere. Thus we give an explicit realization
and proof of the trapped-surface conjecture.

Let us have a spherical distribution of matter of vary-
ing density p which is instantaneously at rest. Consider
a spherical surface 6A which encloses a volume Q. Let
L be the proper radius of BA, the proper distance from

80 to the center. If

„pdv =(1 —e)L, (2)

but which does not have a trapped surface.
If we are given a spherical distribution of matter

which is not at rest but which has a radial current densi-

ty j(r), a sufficient condition for the existence of a
trapped surface is that

(p —j n)dv~ —, L, (3)

where n is the unit outward radial normal. Here we have
assumed that the constant time slice is a maximal slice of
the spacetime; i.e., the trace of the extrinsic curvature is
zero.

In the case where the matter is at rest, we can find

equivalent necessary conditions for the existence of
trapped surfaces. If for a spherical volume 0 we have

(4)pdv & L/2,

then BA itself cannot be a trapped surface. We can also
show that if

It,„L & 5/8tt, (5)

where p,„ is the maximum value of the density in 0,
then there exist no trapped surfaces in A. We can show
that (4) is sharp, but we do not believe that (5) is. An
upper limit to the constant is 3tt/32. We feel that this
may well be the best value.

M=) pdv~L,

then 0 must contain a trapped surface and so must col-
lapse gravitationally. The only assumption is that p is
nonnegative; for example, we place no condition on the
equation of state.

This is a "sharp" inequality in the sense that given any
t. & 0 we can find a distribution which satisfies
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R K—K' +(g K' ) =16zp,

[Kab ab( Kcd) ] 8
b.

(6)

(7)

where p is the source energy density and j is the source
current density. The semicolon denotes covariant deriva-
tive with respect to the Reimannian metric g.

Consider any two-surface in the three-manifold. It
will have a unit normal n'. The expansion of the outgo-
ing null rays from any point on this surface is given by

Initial data for the Einstein equations consist of a
Riemannian three-metric g b and a symmetric tensor K'
(the extrinsic curvature, the time derivative of g,b)
These cannot be given independently, but must satisfy
the constraints

(3)~ g~
—sy2~ (12)

where V is the flat-space Laplacian. If we demand that
the energy density p be nonnegative, we get from (10)
that

V'(b ~ 0.

The min-max principle tells us that (b has its only max-
imum at the origin and so

metric is conformally flat,

g.b =y4(r)B.b,

where b,b is the flat (Cartesian) metric. The scalar cur-
vature R takes a simple form for such a manifold

+Kahn nb g Kab dy/dr ~ 0. (i4)

R =167rP+KabK' . (io)

A trapped surface is a closed two-surface which satisfies

na +Kab& n Kab ~ 0

on every point of the surface. '

Let us now restrict ourselves to spherical symmetry;
further, let us assume that the time slice on which we

define the initial data is a maximal slice, one on which
trK =g,bK' 0. The constraint (6) can be written

Let us now consider a spherical surface of coordinate
radius r. On such a surface it is easy to show that

a (r2(b6)
—

1 d(r2(b4)/dr

If it is not a trapped surface then we must have

(1S)

d(rp )/dr+ 2 rp K' n, nb )0. (i6)

Let us have a surface b 0, of coordinate radius ro, which
encloses a volume A. Take the momentum constraint
[from (7)]

Kab ~8~jb
We have a spherically symmetric three metric and so we

know that there exist isotropic coordinates in which the multiply by the unit radial normal, and integrate over 0
to give

fO fO

8x j nbdv= nbK', dv (&nbK' dS, — K' n, bdv =4nr&p (ro)K' n, nb i„,— K' n, bdv.

Now integrate the Hamiltonian constraint (10) over 0 to give

(i7)

16m pdv = &dv — K K~ dv = —8 (by'(bd'x — K K'dvJ 0 ab ab

—32nropdp/dr i «+32m
PPp

r (dy/dr) dr —„K,bK' dv

t tp= —16nrod(rp )/dr i,,+16m [d(rp )/dr+2r (dp/dr) ]dr — K,bK' dv.

Now subtract twice (17) from (18) to get

16m (p —j n)dv = —16+ra[d(rp )/dr+ —,
'

rp K' n, nb]„+16m [d(rp )/dr+2r (dp/dr) ldr

+ (2K' n, b
—K' K )dv. .

The spherical symmetry allows us to make a further simplification. Since K' is a spherically symmetric tracefree
tensor it must be of the form

K,b = (n, nb —,' g,b )K(r)—
This means

(2o)

f% Pp
abKbdv= K ~ d X= 7t K (b r dr,

K'bn, bdv = ——,
' Kn' ., dv = ——, n K. [d(r p )/drl dr, (22)
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and the condition that a surface not be trapped, (16), becomes

d(rp )/dr+ —,
'

Kp r &0.

Equation (19) now reads

(23)

16m (p —j.n)dv = —16~ra [d(rp )/dr+ —,
'

Kp r]„
PI'p

+16'„[d(rp )/dr+2(dp/dr) r —
6 K p r ——,

'
Krp ——, Kr p dp/drjdr.

The integral on the right-hand side of (24) can now be written as

(24)

16m [6 P
—

6 lp+6rdg/dr+Kg r] +4r(dp/dr)[p+2rdp/dr+ —,
'

Kp r]jdr. (25)

If (14) and (23) are valid everywhere in 0, we get that
the last two terms in (25) and the surface term in (24)
are all negative. In this case we immediately deduce
from (24) that

+f0
16m„(p —j n)dv & 16m —,

'
P dr (26)

Of course, fp dr =L, the proper radius of BQ, and so
we deduce that, in the absence of spherical trapped sur-

faces,
2+2r~ dy +2 dP

2

Using this technique, we can find an even stronger re-
sult for the moment-of-time-symmetry case, i.e., when
K' =0 and the matter is instantaneously at rest. Look-
ing at (24), when K=O, the only terms that remain in

the integral are

(p —j n)dv & ,' L. — (27)

This is the desired result because if we find a set 0 for
which (27) is not satisfied, i.e., for which

=P +rP +rd d
dr dr

&+2r & y (30)
dr

(p —j n)dv ~ -', L,~ 0 (28)
if we have no trapped surfaces and if (14) is satisfied.
Thus, if we have a spherical volume for which

there must be a trapped surface in Q.
This formula shows that the matter flow plays an im-

portant role in the formation of trapped surfaces, in ad-
dition to the energy density. If the matter flow is inward
the likelihood of gravitational collapse is increased,
whereas an outflow of matter makes it more difficult to
form a horizon. If we were to consider the formation of
past trapped surfaces, the analysis would go through ex-
actly as before, except the sign of the j n term. We will

have a past trapped surface if we can find a volume
which satisfies

pdv &L (31)

for spherical, moment-of-time-symmetry data, there
must be a spherical trapped surface inside Q. Static
solutions, for example, must have moment-of-time-sym-
metry slices. Therefore, the converse of (31) must hold
for every spherically symmetric static star.

To obtain a necessary condition for BQ to be a trapped
surface, return to (19) and assume that 80 is trapped,
i.e.,

(p+j n)dv~ —,
' L.~A (29) (d/dr)(rp )+ —,

'
rp K' n, nb ~„&0.

We then get (assuming K' =0)

(32)

f% p'

pdv & rop ~,,+2„r (dp/dr) dr

[d(rp )/dr+2r (dp/dr) ]dr

f /'p

[ 2 P + —,
' [p+2rdp/drj ]dr & —,

' „p dr = —,
' L (33)

Thus, if we have a surface on which

pdv( 2 L, (34)

it cannot be trapped. It is straightforward to show that both (31) and (34) are sharp inequalities: For example, (31)
can be saturated by our choosing p =1 —r' with a large.
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We can derive another necessary condition in the moment-of-time-symmetry case. Start with

drd dr
y r / /dr= —8 r /y /dr= —8 r / ~ dr= —8r / ~ —4 ri/~ ~dr

&p ap

= —4 '
y

' " +2 r '//drd (r~2)
dr ~i

Ip

If the surface at r p is trapped, we have

(35)

~5„3/2 (3)gd„) 2ap ~J

Now we have

f tp
r ' /dr.

p
(36)

f tp
R Ipr dr) yr Rdr~2 r ' )dr=2 r '

y 'Ip drmax& Jp

~ 2 I ' dl 4L' (37)

Hence a necessary condition for the surface at rp to be
trapped is

-,'"'Z~,„L'"&4L,'" (38)

or

(3)g L2) 10 (39)

or

p~,„L & 5/8n. (40)

Both p,„and L monotonically increase as r increases.
Therefore, if at a particular radius p, „L &5/8z, this
will also be true for all interior surfaces and so they also
cannot be trapped. It is hard to believe from the deriva-
tion that this is a sharp inequality; the best value that we

have found is 3x/32 [with the constant-density star, p
=(I+r ) '/ ]. This may well be the best constant.

Condition (3) clearly demonstrates the validity of the
trapped-surface conjecture. It also lends credence to a
version of cosmic censorship —"massive naked singulari-
ties do not exist. " ' If we have a spherical collapse there

may be a naked singularity at the origin. That singu-

larity, however, must be massless, otherwise (3) would

be satisfied, and so we would have a horizon around it.
The key results, (1) and (3), have only been derived in

the spherically symmetric case, but, of course, they are
obviously valid (with some minor adjustments of the con-
stants) for any data which are close to spherical symme-

try.
We would like to thank Jacek Jezierski for his help.

This work is supported in part under the project 01.03.

'S. W. Hawking, in Black Holes, edited by B. S. DeWitt
and C. M. DeWitt (Gordon and Breach, New York 1973).

2W. Israel, Phys. Rev. Lett. 56, 789 (1986), and Can. J.
Phys. 64, 120 (1986).

H. J. Seifert, Gen. Relativity Gravitation 10, 1065 (1976).
4C. Misner, K. Thorne, and J. A. Wheeler, Gravitation

(Freeman, San Francisco, 1973), Chap. 21.
sA. Krolak, Classical Quantum Gravity 3, 267 (1986).
sD. Christodoulou, Commun. Math. Phys. 93, 171 (1984).

1150


