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Supersymmetry and Bistable Soft Potentials
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The diffusion of a Brownian particle is investigated for a class of potentials (soft bistable) which resist
conventional techniques. A new method of solution based on supersymmetric quantum mechanics is
shown to provide, with minimal eff'ort, an accurate determination of the small eigenvalue of the relevant
Fokker-Planck equation. The reciprocal of the small eigenvalue compares very closely with a refined
definition of mean first-passage time.
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The diffusion of a Brownian particle in a one-di-
mensional bistable (double well) potential provides a
useful model to understand the role of external fluctua-
tions in driving an unstable system towards equilibrium. '

Because of its significance in many areas of condensed-
matter physics, this problem has received much attention
over the past decades. In a recent work, the correspon-
dence between the one-dimensional Fokker-Planck (FP)
equation and the supersymmetric Schrodinger equation
was exploited to provide an elegant method for comput-
ing the smallest nonvanishing eigenvalue k1, i.e., the ei-
genvalue which characterizes the relaxation rate of a sto-
chastic system. Later, a variational approach based on

supersymmetry was applied to the computation of the
quantum tunneling rate for a class of confining bistable
potentials.

Very refined analytical approximations to kl are avail-
able in the current literature of nonequilibrium statisti-
cal mechanics. Most stochastic techniques were devised
for treating the case of bistable systems with a discrete

eigenvalue spectrum and Xi confined away from the
higher eigenvalues. The extension of such techniques
beyond the above-described situation becomes rather in-
volved, whereas methods based on supersymmetry are
expected to provide a systematic computational frame-
work.

The use of supersymmetric quantum mechanics for
solving a bistable FP equation has, indeed, two major ad-
vantages over other computational methods. First of all,
in the relevant Schrodinger equation the bistable poten-
tial is replaced with an essentially monostable (single
well) supersymmetric partner. Moreover, the zero eigen-
value appearing in the spectrum of the FP equation is
deleted and the determination of Xl does not require any
difficult tunneling calculation —we recall that in the
low-temperature limit X& is exceedingly small. Secondly,
supersymmetry provides a way to construct a family of
Schrodinger equations, the eigenvalue spectrum of which
differs only for the number of discrete states; as a conse-
quence, diffusion problems with a different number of
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time scales might be related to each other.
In the present Letter we address a new class of bi-

stable potentials which, in spite of their potential appli-
cation to modeling a number of relaxation processes in a
condensed phase, ' have resisted a conventional analysis.
Contrary to the nonlinear potentials commonly studied
in the literature, where the anharmonic behavior at
infinity provides the confining mechanism of the Browni-
an particle (hard potentials), we focus here on potentials
associated with asymptotically constant binding forces.
We will call such potentials soft potentials. The eigen-
value spectrum of the related FP equation exhibits a con-
tinuum branch and, for noise intensity below a certain
threshold, a finite number of discrete positive eigenval-
ues. '

This class of potentials poses a novel and interesting
problem: It is well known that the mean first-passage
time (MFPT) over the high barrier of hard bistable po-
tentials equals the reciprocal of X, ~. The analytical deter-
minations of A.

~ (and its connection with the MFPT)
available in the literature' are based on the approxima-
tion that the local relaxation inside a potential well

occurs in a time interval negligible compared to the
MFPT. Such an assumption does not work for soft po-
tentials, where the Brownian particle takes an infinite
time to approach a stable point from infinity.

In the Letter we show how supersymmetric quantum
mechanics provides a systematic and simple method for
determining k~ also in the case of soft bistable potentials.
We shall compute, in fact, the smallest eigenvalue for a
particular family of soft potentials, the shape of which

may be varied by means of a tunable parameter R. In-
creasing R above a certain value changes the potential
shape from monostable to bistable. Our choice of the
potential enables us also to study the way by which local
changes of the potential shape affect the approach to
equilibrium of a Brownian particle. The results of our
computation are compared with the exact numerical in-

tegration of the Schrodinger problem associated with

the FP equation and with two improved definitions of the
MFPT.

We consider a one-particle system with time evolution

defined by the stochastic differential equation of the
Langevin type

changes from a single-well structure for R & R*=0.88
[sinh(R*) =11 to a double-well structure (Fig. 1). Note
that IV(x;0) = —W(x;~).

We shall now evaluate XI for all values of the parame-
ter R. The FP equation associated with Eq. (1),

ap(xr ) a ale a
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is transformed' into the imaginary-time Schrodinger
equation

D —+V y(x, t),8y(x, t )
8x

(3)
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after the transformation p(x;t) =e ~2Dy(x;r). In Eq.
(3) the potential V is given by

2
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and, like W(x;R ), has a double-well structure for
R &R*.

Because of the form (4) of the potential, the Hamil-
tonian H is factorized as H =A+A with —A =D' 8/
8x+ (4D) '~ BW/Bx. The supersymmetric partner
0+ =Ad+ has a single-well potential and for D =1 ac-
curate analytical expressions for its eigenfunctions y+
have been derived by our replacing H+ with a suitable
Poeschl-Teller (PT) Hamiltonian H+ . " In the re-
mainder of our calculations we set D equal to one. '

The eigenfunctions of the two supersymmetric partner
Hamiltonians corresponding to the same eigenvalue are
related by yr =Ay+. To compute the eigenvalue spec-

dx/dr = —BW/Bx+ rl(t),

where

(la) 10

6'(x;R) = —2P ln
cosh yx+ sinh R

(lb)

and rl(t) is a Gaussian stochastic noise with correlation
functions &rl(r)) =0 and (rl(t)rl(t')) =2Db(t —t') For.
y 0 the free-particle potential is obtained, while for

y 0 with yp=const, (lb) produces the exactly solv-

able wedge potential. In this Letter we set y=p=l.
As the tunable parameter R varies, the potential shape
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FIG. 1. Plot of the potential W(x;R).
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trum of the original FP equation, we utilize the exact
Hamiltonian H+. In particular, our best determination
of X~ is given in terms of the bound state yb+ of H+, i.e.,

&i =&yb IH+ I vs &/&yb 1
yb+»

with"

yb+ = (coshax)

(5)

(6)
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FIG. 2. ij, & vs R. The analytic supersymmetric result (5)
(solid line) is compared with the reciprocal of T„Eq. (10)
(dashed line), the numerical integration of Ref. 8 (dots), and
Kramers' approximation (7) (dotted-dashed line).

In (6) a and s are functions of the tunable parameter R
(Ref. 11):

sinh2R
sinh2R —2R '

&/2.

1+ 8tanh R
Q

From (5) we have A, ~ 1 for R =0 and X~ = 8e for
R & 2. The behavior of A. ~, Eq. (5), as a function of R is

displayed in Fig. 2 and it is compared with the value
of A. i obtained from numerical integration of the
Schrodinger equation (3). We see that the computation
of A. & using the supersymmetric quantum mechanics gives
an excellent agreement with the exact numerical compu-
tation for all values of R, including the range R &2
where the usual semiclassical approximations are no

longer tenable.
To obtain the correct result for X~ with use of standard

FP techniques is less straightforward. In fact, the com-
putation of X~ through Kramers' formula turns out to
hold only for D«1. The assumptions implicit in Kra-
mers' method are often summarized by the requirement

that

D « A W:—W(0'R ) —W(+ x R )

=2ln(cosh R/2sinhR),

where ~x denote the position of the potential minima
(for R & R*). Such a condition is meant to guarantee
with one token that the potential barrier h, W is much
larger than the average energy Auctuation D and that the
bistable potential can be approximated to parabolic
curves in vicinity of the extremal points x =0 and + x .
This is not the case for soft potentials where the second
condition corresponds to the further inequality ' D
« W"(0;R) /W'"'(0;R) =O(1). This explains why
Kramers' formula for X~,

k~" =—[ (
W"(0;R) )

W"(~ x;R ) j '~ exp( —5W/D)

8 sinh R —1
hR

cosh R
is apparently inadequate at D 1 even in the limit
R ~ (Fig. 2), where AW=2R becomes infinitely
large.

In order to take into account the effect of softness, one
has to generalize Stratonovich's definition' of the
MFPT. The mean time for a Brownian particle placed
at I =0 in xi to reach a point xz with x~ & x2 is denoted
by T(x&,x2). In the presence of a binding potential, the
following boundary conditions may be imposed:
d Tldx ~ ~, , „0 (rellecting wall at —~ ) and
T(x2,x2) =0 (absorbing wall in x2). T(xi,x2) is thus
determined by'

+Z2 Wy

T(x ),x2) dy [D (y)p(y) l ' p(z ) dx, (8)

where D(x) is the diffusion function of a generic one-
dimensional FP equation and p(x) is the relevant sta-
tionary solution normalized to one.

In the case of hard bistable potentials, T( —eo, 0)
defines' the MFPT for a Brownian particle sitting
about the bottom of the negative potential well at —x
to cross over the potential barrier located at the origin
x 0. For the class of soft potentials (lb) such a
definition of MFPT is illegitimate for two types of
reasons. Being the smallest eigenvalue k~ close to the
continuum, the hopping phenomenon over the potential
barrier may not be distinguishable from the relaxation
inside a single potential well. Furthermore, as a conse-
quence of the potential softness, T(x~,0) diverges for
x~~

A well-behaved definition of MFPT can be obtained
on averaging T(x ~, 0) with respect to the normalized dis-
tribution of the negative starting points 2p(x ~ ):

&T(0)& =2) T(xi,0)p(xi)dxi

Io tx
=2g dx g p(y)dy [D(x)p(x)j
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The connection to ki is now assumed as for hard bistable
potentials, i.e., Xl =(T(0)) '. The relevant determina-
tion of k& compares fairly closely with the results of nu-
merical integration for R ) 1.5 only.

The absence of a clear-cut time-scale separation be-
tween the relaxation inside a potential well and the hop-
ping phenomenon for smaller values of R requires an
even more refined definition of the MFPT. We propose
to substitute definition (9) with the autocorrelation
time' of the variable x(t),

f0 tx 2

yp(y)dy [D(x)p(x)] ' (10)
x

where (x ) =f-+ x p(x)dx. Such a substitution is ex-
pected to better account for the relaxation process of the
activated Brownian particle. ' T, and (T(0)) are almost
indistinguishable from ki ' in the case of high potential
barriers (e.g. , R )2), whereas the largest disagreement
occurs at R=0, namely, kl '=1, T, =0.9, and (T(0))
=0.5. In Fig. 2 the reciprocal of the MFPT (10) is
displayed for D =1. A comfortable agreement with the
results derived by means of supersymmetry is obtained
over the whole range of R. The small discrepancy be-
tween )j.i and T, ' in R 0 (about 10%) should be as-
cribed to the presence of a continuum branch in the ei-
genvalue spectrum of Eq. (2).

In this Letter we have determined only the relaxation
dynamics of the Brownian particle for long time scales.
In order to analyze its behavior at shorter times, one
should take into account the contribution coming from
the continuum part of the spectrum. This is, in general,
a very difficult problem. For the class of potentials treat-
ed here, however, one hopes to make some progress since
a good approximate expression for the unnormalized
continuum eigenfunctions —as well as for the density of
states' —had been already obtained by means of super-
symmetry. This is the subject of ongoing research and a
future publication. '
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