
VOLUME 61, NUMBER 9 PHYSICAL REVIEW LETTERS 29 AUGUST 1988

Scaling and the Small-Wave-Vector Limit of the Form Factor in Phase-Ordering Dynamics
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The consequences of the scaling hypothesis in phase-ordering dynamics are examined. Dynamics
governed by the time-dependent Ginzburg-Landau and Cahn-Hilliard-Cook equations are studied. An

upper bound is found for the dynamical exponents. It is also found that for a critical quench with

Cahn-Hilliard-Cook dynamics, if the length scale of the patterns increases as t ' ' and the form factor
behaves as k for small k, then 8 must be ~ 4. Experimental and numerical results give 8=4.

PACS numbers: 81.30.Hd, 02.70.+d, 64.60.Cn

There has recently been a renewed interest in the or-
dering dynamics of thermodynamically unstable systems
(e.g., spinodal decomposition). The most significant re-
sults obtained so far are that, asymptotically, the form
factor shows scaling behavior and for dimensions ~ 2
the length scale of the patterns increases algebraically
with time. ' This has been demonstrated experimentally
by quenches of binary alloys, glasses, and polymer
blends and numerically by Monte Carlo and Langevin-
equation simulations ' and cell-dynamical systems
(CDS) methods. Furthermore, for the case with non-

conserved order parameter (NCOP), there is a theory
for the form factor by Ohta, Jasnow, and Kawasaki us-

ing interface-dynamics arguments. This has been found
to agree well with simulations. The form factor for a
critical quench with conserved order parameter (COP)
has not been obtained analytically.

In this Letter, I consider dynamics governed by the
time-dependent Ginzburg-Landau (TDGL) and Cahn-
Hilliard-Cook (CHC) equations. The scaling hypothesis
is assumed to be true and its consequences are examined.
It will be shown that the scaling hypothesis gives an

upper bound for the dynamical exponents. I then assume
that the dynamical exponent is —,

' for the COP case. It
will be shown that, for a critical quench, if the form fac-
tor Sq(t) at large t behaves as -k for small k, then
B~ 4. This is compared with numerical and experimen-
tal results.

The form factor has an asymptotic scaling regime in

which it behaves as

S~(t) =l(t) 'f(q),

where q =1(t)
~
k ~, k is the wave vector, t is time, v is

the spatial dimension, and f(q) is the scaling function.
l(t ) is the time-dependent length scale. In the COP case
f(q) may not be universal, but in some limits f(q)
should have universal characteristics. At large q,
Porod's law' gives fCL I/q"+'. Strictly speaking, Porod's

law only applies in the limit of interface thickness « l(t)
and so it is only obeyed for k & k;, where k; '~ inter-
face thickness. For critical quenches Furukawa" con-
jectured that there is a q regime where f(q)-q "due
to entangled interfaces. For small q, Furukawa guessed
that, because of thermal Auctuations and conservation of
the order parameter, f(q) may be proportional to q 2.

I start with a stochastic partial-differential-equation
model of the phase-separation dynamics, '

&at(r, t)/8t - L(n')~p—(r, t) +8(r, )t, (2)

where y is the order parameter, L is the kinetic coef-
ficient, and p is effectively the chemical potential. 8 is a
Gaussian noise obeying the fluctuation-dissipation
theorem,

(8(r, t)) -0,
(8(r, t )8(r', t ') ) 2L (t'V )~b (r —r') b(t —t ') (3)

If P 0 the order parameter is not conserved and (2) is
the TDGL equation. If P 2 the order parameter is con-
served and (2) is the CHC equation.

I assume that p(r, t) can be separated into two parts,

It(r, t) -Ito(r, t) DV'Vr(r, t), —

where D is a positive constant and p is the local portion
of p (i.e., p does not contain any gradients). p is usu-

ally taken to be the Landau-Ginzburg form, —rVr+gVt3,
but other forms of p may also be used. p (y) must be
an odd function of y and have three zeroes, correspond-
ing to the two stable fixed points at the equilibrium
values of p ~ p,q and the one unstable fixed point at

0. A quench is called critical if fd'r y(r, 0) =0.
The form factor is just the Fourier transform of the

two-point correlation function, Sq(t) =(
~ Vrq(t) ~

). The
angular brackets indicate an ensemble average. The
time evolution of Sh(t) is then given by

&ST(t)/Bt = —2Lk~[Re(p —q(t) Vtq(t)) —I] —2LDk +PS'(t),

1988 The American Physical Society 1135



VOLUME 61, NUMBER 9 PHYSICAL REVIEW LETTERS 29 AUGUST 1988

(6)

(10)

i.e., 8&4 —e for Ve&0. Therefore, if f(q) behaves as
-q for small q, then 8 must not be less than 4.

The term resulting from fluctuations in (5) is ~k, so
that Sk (t) should also be proportional to k for
sufficiently small k. This should be true for early times,
but the corresponding term in (6) goes to zero as
I/l(t)" ' for large t. Therefore the f(q)~q regime be-
comes smaller as I (t ) increases, and vanishes in the
asymptotic limit. This is consistent with numerical simu-
lations which show that the scaling function is indepen-
dent of the magnitude of the noise, ' as well as with ex-
perimental results, in which the scaled form factor gen-
erally becomes sharper at later times.

I now examine numerical results. Figure 1 shows a
log-log plot of the small-q scaling function from a CDS
simulation corresponding to the Cahn-Hilliard equation
(the CHC equation without noise). This method gives
scaling properties consistent with the Cahn-Hilliard

01-:
Prob(yi, . I@i, I &l(t)'q ) &q /q (8)

Therefore, for sufficiently small q, almost surely, I yi, I~ l(r)""q'", vb'& b.
Now assume that pk(t)/l(t)'~ ' is bounded near

k =0 for all t. Actually, since p (y) is an odd function
of y, by symmetry arguments one would expect pk to
vanish as k 0. The left-hand side of (6) must be the
same order as f(q) for small q. Then for sufficiently
small q,

q'~ q'&p'g( )erg(r)&/l(r)
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. 1

FIG. 1. A log-log plot of the scaled form factor for the CDS
simulation on a 128X128 lattice. Units are arbitrary. Data
from five different update times are shown (crosses=750 up-
dates, plusses=1080, triangles=1500, diamonds=2000, squares
=2700). The line has a slope of 4 and is drawn as a guide to
the eye. The plot is linear over 3 decades in f and —', decade in

q. There a a tail at small q with slope less than 4. This tail is
more noticeable at later update times.

~q'&
I p'-~«) I I w~«) I &/1(r)" '

2+ b/2 —~/2

where p~ is the Fourier transform of p . I now make the central hypothesis of this Letter. I assume that the scaling
hypothesis holds and the length scale grows as r'=t '~~ in the scaling regime (for v~ 2). Substituting the scaling form
(1) into (5) gives

vf(q)+qdf(q)/dq~ l'—f' 'q~&pn g(r)yl, (r)&+l~ ~ 'qp D—l' I' 2qi+I'f(q),

where I =1(t). In order for scaling to be true the right-hand side of (6) must be independent of t as t
Let us inspect Eq. (6). The second term is due to thermal fluctuations. If p&P+v this term must go to zero as

t ~. If p & P+2 the third term must also go to zero as t ~. In the first term, &p —q(r )yi, (t) & is the Fourier trans-
form of Jd R&p (R+r, t)y(R, t)&. I y(r, t) I must bebounded, say, by y,„&0. Then

„d'R&pn(R+r, r)ill(R, t)&~ y,„„d'R& I pn(R, r) I &. (7)

For large t, p is only nonzero at the interfaces and the
interface profile does not change, so that j d R almost surely, for r/e & 0, where x is a positive constant
x& Ip (R,t) I&/V must be proportional to the interface independent of q. Therefore for small q there is a con-
area density which decreases as 1/I (t ) Th. erefore, sistency condition for 8,
fd'R&p'(R+r, t)ll (R, r)& must decrease at least as fast
as I/l(t) as a function of t and the Fourier transform
&p —i,(t )yi, (t )& must increase at most as I (t ) ' ' as a
function of t [ a factor of l(t)" comes from the Fourier
transformation]. Now suppose that &&1+P. Then all
three terms on the right-hand side of (6) must go to zero
as t ~ ee. Then (6) can be easily solved to get
f(q) ~q ". This is unphysical as it is not bounded, and
so p must be ~ I+P (a~ 1 for TDGL and a~ —,

' for
CHC). This bound is consistent with the generally ac-
cepted results of a 2 for the NCOP case and a~ 3

for the COP case.
In the rest of this Letter, I will only consider the COP

case. The experimental and numerical evidence points to
a —,

'
(p 3) for the COP case (although this is still a

point of controversy '). So I assume p 3 for the CHC
equation. Then the last two terms on the right-hand side
of (6) must go to zero at large times' and scaling re-
quires that &p i, (t)imari, (t)& must increase as l(t)" ' as a
function of t for large t.

I can now find restrictions on the form of f(q). I

assume a critical quench. Sk(t) =l(t) "f(q) is just
& I ilrir(t) I & averaged over all IkI =k. For the COP
case, f(0) =0 for a closed system. I assume that f(q) is

continuous and increases algebraically near q =0, so that
f(q)~q with 8~0. Then the Chebychev inequality
gives
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FIG. 2. The same plot as in Fig. 1, except the data are from

a simulation on a 64X64 lattice. In this case, the lower-slope

tail is much more prominent at much earlier times than in

Fig. 1.

FIG. 3. The same type of plot as in Fig. 1, except the scaled
form factors are late-time results from polymer-blend experi-
ments by Wiltzius, Bates, and Heffner. The line in the plot has
a slope of 4.

equation (see Ref. 7a for a complete description of
CDS). The simulation was performed on a 128X128
lattice and the scaling function was averaged over 48 ini-
tial conditions. The scaling functions for five times, from
750 to 2700 updates, are shown.

Figure 1 is linear over about 3 decades in f and 4 de-
cade in q. The line in Fig. 1 has a slope of 4 and is
drawn as a guide for the eye. Least-squares fitting of the
data sets gives a slope of 4.0~ 0.1, and so b 4. In fact
it is surprising that the log-log plot is linear for such high
values of f(q) (f/f~, „—0.5). For q & 0.15 [f(q)
&0.002] there is a tail which grows at a slower rate

than the linear portion of the plot. This portion is larger
for later times when finite-size effects may be important.
That this is probably a finite-size effect is shown in Fig.
2. This is the same plot as Fig. 1 except that the simula-
tions are on a 64X 64 lattice with twenty runs. It is clear
that the tail is much more noticeable at much earlier
times than for the 128 X128 simulation. I also examined
2D simulations of the CHC equation by Vinals. ' The
small-q scaling function is again compatible with 6' 4,
although in this case there are only three data points for
small q. Comparison with 2D Monte-Carlo Kawaski
spin-exchange simulations by Amar, Sullivan, and
Mountain gives a 8-3. However, it is possible that
their scaled form factor is not yet asymptotic since the
scaled form factor may still be getting sharper at the lat-
est times.

Most experimental investigations of the form factor
have concentrated on the area near the peak, but I can
still test the present bound (10) against experiment.
Figure 3 shows a log-log plot of scaled form factor versus

q for a critical quench of a mixture of perdeuterated and
protonated polymers by Wiltzius, Bates, and Heffner.
Only a limited range of small-q data are available so
that the plot is only over about —,

' decade in q and 2 de-
cades in f, but the linear portion is consistent with 8=4
(a line with slope of 4 is shown). ' Comparison with

limited small-q data from a quench of a Fe-Cr alloy by
Katano and Iizumi ' is also consistent with b =4.
Komura et al. have investigated quenches of Al-Zn and
Al-Zn-Mg alloys. They fitted their scaled form factors
by a form with f(q )-q

2 for small q and f(q )—1/q
"+'

for large q. In some cases the fits are quite good, but
these are for quenches very far from critical, for which
the dynamics is much slower. Furthermore they do not
find a —,', which indicates that their experiment did not
reach the asymptotic regime.

In summary, I have viewed the problem of phase-
ordering dynamics from the opposite of the usual direc-
tion. I have assumed the experimentally observed facts
[i.e., the form factor scales and l(t) grows algebraically]
and examined the consequences. Starting from the
TDGL and CHC equations, it was shown that the scal-
ing gives an upper bound for the dynamical exponent, a,
with a ~ 1 for TDGL dynamics and a ~ —,

' for CHC dy-
namics. Then I used a 3 for the COP case. For a
critical quench, it was shown that if the scaling function
behaves as q for small q, then scaling requires 8~4.
The restriction on 8 was found to be consistent with
simulations of CDS models and the CHC equation as
well as for criitical quenches of polymer blends and

binary alloys. In all the cases examined, 8 is about 4.
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