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Nonlinear Optical Susceptibilities of a One-Dimensional Semiconductor
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By use of the Keldysh nonequilibrium Green s-function methods, analytic expressions are computed
for the nonlinear optical susceptibilities for the one-dimensional semiconductor model of a conducting
polymer. The model has no adjustable parameter. The results for third-harmonic generation are in ex-
cellent agreement with experiments on polyacetylene. Further nonlinear optical eff'ects, which should be
experimentally observable, are predicted. The physical significance of these results is discussed.

PACS numbers: 78.65.Hc, 42.65.Bp, 72.20.Ht, 78.20.Bh

Recently, considerable experimental attention has
been focused on the nonlinear optical properties of con-
ducting polymers. Conducting polymers exhibit novel

nonlinear optical properties. In particular, there are ma-

jor shifts in oscillator strength within picoseconds after
absorption of photons. ' Also, a large third-order optical
susceptibility, X, has been observed in polyacetylene. '

These observations indicate that conducting polymers
might have applications as fast nonlinear optical materi-
als.

On the theoretical side, there is persistent debate
about the strength of the electron-electron interactions in

conducting polymers. In Ref. 4, it was shown that a pic-
ture of weakly interacting quasiparticles provides a con-
sistent theory of conducting polymers. The predictions
of the theory are in fairly good agreement with all previ-
ous experimental observations. Since the strongly and
weakly correlated systems behave very differently in

many ways, particularly in their responses to an external
optical field, it is natural to ask whether or not the same
theory can predict the spectrum of the nonlinear optical
susceptibility measured in polyacetylene.

There are two types of elementary excitations which
are related to th" optical responses of the system: (i)
charge excitations which occur in one-photon processes
and (ii) neutral excitations which involve two-photon
processes. Thus, the two-photon processes involved in

the nonlinear responses will enable one to access the neu-
tral excitations which are not accessible (because of a
selection rule) to one-photon processes. The relative po-
sition of the gap to charge excitations (d„) and the gap
to neutral excitations (5„)depends upon the strength of
the electron-electron interactions in the system. For

the strongly correlated system d, &)h„, while for the
weakly correlated system d„=h„. Thus, the strongly
and weakly correlated systems have distinct qualitative
signatures in their nonlinear optical responses. For the
strongly correlated system, we expect that the one-
photon resonance occurs at much higher energy than the
two-photon resonance. In contrast, for the weakly corre-
lated system, the one-photon resonance energy should be
close to n times the n-photon resonance energy. There-
fore, a detailed study of the nonlinear optical responses
of conducting polymers will provide another stringent
test of the role of electron-electron correlation effects. In
this Letter, I investigate the nonlinear response of con-
ducting polymers in the framework of a independent
quasiparticle model as a first step towards understanding
the large nonlinear optical susceptibility of this class of
quasi-one-dimensional systems.

Because of the great complexity of the calculations,
few explicit calculations of the nonlinear optical suscepti-
bilities have been performed. I am not aware of any an-

alytic calculations over the full frequency range which
have been carried out for realistic models based on a sys-
tematic analysis of the appropriate response theory.
Here I derive the general formalism of nonlinear opti-
cal susceptibilities from the Keldysh nonequilibrium
Green's-function method. '

The nth-order nonlinear optical susceptibility,
X

" (0;co~, . . . , to„), is related to nth-order current-
current correlation function, gitj" (0;cot, . . . , co„), ac-
cording to

(n) g
(n) & Xij (Q; Co &, . . . , ton )

~Q;N~, . . . , N„g =
QN~ '' N„

' n

n! "—,„d . . d „„"dt dt„„r d dt '" *+'"'(T,j(,t)j(,t ) . . j( „,t„)),

(2)

with T, the time-ordering operator along the Keldysh contour' and j (x, t) the current operator.
Expressing the nonlinear susceptibilities in terms of Keldysh time-ordered current-current correlation functions has

great advantage over the conventional formalism. The current-current correlation functions in Eq. (2) can be calculat-
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ed with Keldysh Green s functions and Feynman diagrams similar to those in equilibrium many-body problems. This

simplifies the calculations to a great extent.
Since we have previously argued that most conducting polymers are weakly correlated systems, ' I take the nonin-

teracting one-dimension model" as the unperturbed Hamiltonian Ho, and couple it to a time-dependent external elec-

tromagnetic Beld. The resulting Lagrangian density is

L=y (x) {ihcl, —ep —cr3vF[ —ici„—eA(x)/c]]y(x)+Ay (x)crly(x).

The charge and current densities are given by

p(x) =y'(x) y(x),

j(x) =VFy (x)cr3y(x),

(4)

(5)

where yi(x) =(y((x), yj(x) ) is the two-component spi-

nor describing the left-going and right-going electrons,

UF is the Fermi velocity, and 6 is the energy gap between

the valence and conducting bands. p(x) and A(x) are
the scalar and vector potentials characterizing the exter-
nal electromagnetic field; the o's are the Pauli matrices.
The model described by Eq. (3) is the simplest model of

a one-dimensional semiconductor, and neglects dynamic
electron-phonon and electron-electron interactions. The
effects of these interactions are the subjects of ongoing
investigations. I emphasize that the only parameter in

the model is the gap, 5, which can be determined in-

dependently from the linear optical response measure-

ment. Therefore, there is no adjustable parameter in the
model.

The third-order optical susceptibility, I (0;co|,co2,

N3), is proportional to the four-current correlation func-

tion Zjj (0;col, co2, co3) as in Eq. (1). Following the
Feynman rules, ' ' we have

Xjj (0 ~Nfl co2rco3) ~ ( —2) l
~ 2

e vF g Tr[cr3611(k,co)cr36i (k, co —col)
I,m, n-&4

x cr36~„(k,co —Ni —N2) cr3G, j (k, co —co i
—co2 co3)] 2, (6)dk dN

where 6;j(k,co) are components of the Keldysh Green's functions.
From the Lagrangian (3) and the definitions of the Keldysh Green's functions, one can readily calculate these

Green's functions:

co+ v Fko'3+ Acre/h
Gli k, co

co —cok +i rt

co+ v Fko3+ Acr|/h

N N) iri
622(k, co) -—

ix hai
612(k~N) Nk VFkcr3 8(N+Cok)

Nk

(7)

(8)

621(k, N) =- lÃ hol
cok + v Fkcr3+ 8(co —cok ), (10)

where cok=[(vFk) +(6/h) ]' and rj=o+.
First let us calculate the third-harmonic generation (THG); i.e., we take Nl =coz=co3 =co in Eq. (6). The calcula-

tions are very tedious. Fortunately, they can be done exactly. For a system which consists of chains in a parallel array,
the THG is

8)
Ego(co) —=L ( —3co;co,co, co) = {3(1—8z )f(3z) —8(1 —4z )f(2z)+(5 —8z )f(z)j,8 3

with Bi=e (hvF) a/1152rrd v, where

(z)—:~

arcsin(z)
z(1 —z') '"

1

( 2 1)1/2
lZ

2z
cosh z

I z I

(12)
z )1,

and z = hco/2h. a is the lattice constant and v is volume
of the unit cell; AvF=Wa, and Wis the bandwidth. For
polyacetylene, 8 ] —1 x 10 ' esu.

The calculated Ego(co) is plotted in Fig. l. It exhib-
its a divergence at 3@co=26 which comes from the
three-photon resonance enhancement. In order to com-
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FIG. 1. The real (sold line) and imaginary (dashed line)
parts of Zgo(co).

FIG. 2. The theoretical (solid line) and experimental
(dashed line) iZ@o(co) i.

pare with experiment, I plot the calculated iZ@o(co) i

together with the experimentally measured one (Ref. 2)
in Fig. 2. The calculated spectral features are in excel-
lent agreement with experiment. A very surprising
feature is the existence of a peak starting at hco=6, .
This peak has been observed experimentally. It cannot
be a two-photon resonance enhancement because in the
rigid-band semiconductor model which I have adopted,
two-photon absorption is forbidden by momentum con-
servation. This can be seen explicitly in Eq. (11). The
coefficient of (2z) is ro ortional to 1 —4z which van-

ishes for z - —,', i.e., hco =h. Though the transition ma-
trix element vanishes exactly at Ii'tco =6, it is finite away
from that particular energy. In the neighborhood of
hco 4, the smallness of the energy diff'erence in the
denominator contributes to the observed peak. There-
fore, this peak is due to a large polarizability at that en-

ergy. As we can see from Fig. 1, this peak comes mainly
from the real part of ZPilo(co) instead of the imaginary
part.

The intensity-dependent index of refraction (IDIR),
Z co has also been computed. I getf p p iIIR( ),

ZtIR(co) —= —,
' R"'(—co —co co co)+Z"'( —co co —co co)+Z"'( —co co co —co)]

B2
((I 4 2)f(2 )

(1 —4z ) 2i 8z —12z +9z —2f( ))z' 2(1 —z')' 2(1 —z')' (13)

where f(z) and z are defined as before, and B2
—:e (hvF) a/48xh v. For polyacetylene, 82-2&&10
esu.

Again, momentum conservation implies that there is
no absorption at the two-photon threshold and hence is

responsible for the factor 1 —4z which multiplies f(2z);
i.e., the two-photon resonance is suppressed.

The intensity-dependent index of refraction, ZiIR(co),
is plotted in Fig. 3. Ziplit(co) is roughly the same order
of magnitude as ZPiIo(co). From Fig. 3, we see that
ImZtia(co) has a finite peak near z = —,

' . I predict that
a two-photon absorption experiment should be able to
observe this peak. Another important feature of
Zitiia(co) is the large ReZiIR(co) over a wide frequency
range. Particularly, it is large when ImZgiit(co) is
small. This means that these conducting polymers will

display large changes in their index of refraction under
intense laser illumination.

The result on ImZi@R(co) agrees with the numerical
result on a discrete model obtained by Agrawal, Cojan,
and Flytzanis. Therefore, both continuum and discrete
models produce the same spectral features as expected.

In this Letter I have shown that the Keldysh non-
equilibrium Green s-function method provides the most
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FIG. 3. The computed XtIR(co). The dot-dashed line is the
real part; the dashed line is the imaginary part; and the solid
line is the magnitude.

!
practically useful scheme to calculate the nonlinear sus-
ceptibilities. The significance of the results in the field of
conducting polymers can be summarized as follows: (1)
I have identified the qualitative differences in optical
responses for strongly and weakly correlated systems.
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The third-order optical susceptibilities of the nonin-
teracting model clearly show resonance features at pho-
ton energies near 3 5„2h„and 6,. The excellent
agreement between experiment and theory is a strong
evidence that polyacetylene is well described in terms of
weakly interacting quasiparticles. ' (2) The large non-
linear optical susceptibilities in conducting polymers
make these materials very promising candidates for fast
nonlinear optical materials. In particular, the calculated
intensity-dependent index of refraction XtnItt(co) has a
large real part over a wide range of frequencies. Most
importantly, it is very large even where there is little ab-
sorption. This feature indicates that these materials may
be high-quality nonlinear optical materials. Experimen-
tal verification of these features would certainly be very
exciting. Further effects, such as perturbative effects of
the dynamic electron-phonon interaction, can also be ex-
plored within the Keldysh formalism. Since the two-
photon resonance is suppressed in the noninteracting lim-
it as a result of momentum conservation, I expect that
the major effect of electron-phonon coupling will be to
act as a momentum sink, and hence enhance the two-
photon peak. I am currently studying this problem.
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