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We demonstrate the relation 8 =2¢. Here the exponent 6 is defined as D~ N°® where D is the equilib-
rium lamellar thickness of the diblock copolymer ordered phase and N is the molecular weight. The ex-
ponent ¢ is defined as /~1*, where [ is the pattern size of the spinodally decomposing system (say, a

binary alloy) and ¢ is the time.

PACS numbers: 64.60.Cn, 61.41.t+e, 64.75.+g

It is now reasonably well established, by real' and nu-
merical experiments,? that the form factor S(k,t) at
time ¢ for the quenched binary alloy undergoing spinodal
decomposition has the following form*:

Sk,t)=I1@)Fki@)),

where /(1) is the representative length scale (e.g., the
pattern size) and F is an appropriate master function.
Furthermore, it is believed that the length scale obeys a
power law [/ ~t?. There is strong evidence for the ex-
ponent ¢ to be T,">* although this value is not unani-
mously accepted.’ The purpose of the present Letter is
to show that there is a simple relation, 6 =2¢, between
the exponent ¢ and the lamellar-thickness exponent 6 for
block copolymers defined by D~N® where D is the
equilibrium lamellar thickness and N is the molecular
weight of the copolymer ordered phase. This implies
that the experimentally established value =3 (Ref. 6)
is further support for ¢ = .

A 1:1 diblock copolymer (BCP) is a linear-chain mole-
cule consisting of two equal-length subchains a and b
grafted covalently to each other [Fig. 1(a)l. The sub-
chains a and b are made of different monomer units, A
and B, respectively. Below some critical temperature 7T,
these two blocks tend to separate, but because of the co-
valent bond, they can segregate at best locally to form a
lamellar structure [Fig. 1(c)]. To describe the quench-
ing process of the system consisting of many BCP’s (i.e.,
a BCP melt) from above T, to below it, a simple model
was proposed in terms of a cell dynamical system
(CDS), and the corresponding partial differential equa-
tion model was derived:

/9t =LV3(—ry+uy’—Viy) — By, (D

where y(r,?) is the order parameter describing the local
monomer concentration difference between A and B; L,
7, and u are positive phenomenological parameters, 7 be-
ing a measure of the quench depth; and B € (0,1). The
equation is essentially the Cahn-Hilliard (CH) equation

with the subtraction of By. The spirit of modeling in
Ref. 7 was purely phenomenological, so that, strictly
speaking, we can fix parameters only by comparison with
real experimental results. Furthermore, the motivation
was to have the simplest model to give the spatially
nonuniform equilibrium pattern; the equation need not
describe the ordering process of the BCP system faithful-
ly. In any case in this Letter what we need is the proper-
ty of (1) giving the right equilibrium patterns for BCP’s
when B=0 (Fig. 2), as will be discussed below. We
should point out that Fig. 2(a) and the patterns obtained
in the actual BCP film experiments® are hardly distin-
guishable.

When the segregation is weak, i.e., the interface thick-
ness and the thickness of lamellae are of the same order,
we can accurately study this equation or the correspond-
ing CDS model® numerically without any particular dif-
ficulty. We have computed the spherically averaged
static form factor S(k) after a sufficiently long time, and
calculated the average (k)eq of k with respect to S(k).
(k)eq' is regarded as the measure of the lamellar thick-

(a)

FIG. 1. (a) A diblock copolymer molecule. We consider
here only the 1:1 block copolymer which has equal-sized sub-
chains a and b. (b) Above T, a and b portions mix to make a
disordered phase. (c) Below T, a and b tend to segregate, but
because of the covalent bonds between subchains, segregation
is possible only locally and a lamellar structure forms.
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FIG. 2. The pattern after 7000 time steps for (a) B =0.002
and (b) B=0.02. (k) is sufficiently equilibrated by then. (c)
The empirical relation between (k)eq=D and B. The line has
the slope 0.254 corresponding to the best fit.

ness D. The result is D~B® [Fig. 2(c)] with «
= —0.254 £0.005. In actual experiments for the weak-
segregation case, D~N'2.% Hence we can empirically
conclude that B is proportional to N ~2. This can also
be understood by dimensional analysis. Looking at Eq.
(1), we have [V*y]=[By], so that [B] ! =1[/]*%, where /
is the relevant length scale; we have ignored L since it is
independent of /. The subtraction term, which makes the
final equilibrium pattern spatially nonuniform, should
represent the effect of the connectedness of each chain.
Hence the relevant length scale due to this effect must
be N]/z, so that we get B~N 2 A more direct
justification that Eq. (1) exhibits the correct equilibrium
behaviox; can be obtained by the following rewriting of
Eq. (1) ":

Ay (r,t) -7y2 SHy(r,1)]
ot Sy (r,1)

where H happens to be the effective Hamiltonian first

()

Ay (r,1)/9t+By(r,t) = — LV [Vy(r,1)- i(r,1) V- i(r, )],

derived by Leibler for a BCP system.'® The comparison
of Eq. (2) and the Hamiltonian derived by Ohta and
Kawasaki'! also gives B~N ~2. Since the lamellar
thickness is an equilibrium quantity, we should stress
again that even if Eq. (1) is a crude model for the actual
kinetics, these comparisons tell us that the correct ex-
ponent for the thickness can be obtained from (1). In
the case of strong segregation, i.e., when the interface
thickness is much smaller than the lamellar thickness, to
get a reliable numerical result from Eq. (1) or its CDS
counterpart is extremely difficult, since we need a huge
system to avoid finite-size effects. Ohta and Kawasaki'!
obtained for this case 6 =% from the Hamiltonian in (2)
using a variational technique.
The equilibrium pattern should obey

By =LV (—ty+uy’—V3y). 3)

Comparing this result with the CH equation [Eq. (1)
with B=0], we realize by dimensional analysis that
[B ~'] corresponds to [t], i.e., [N?] corresponds to [t].
Hence the asymptotic growth law /(¢) ~¢® for the CH
equation, which is usually the dimensional-analysis re-
sult,* should imply /~N?; that is, §=2¢. This argu-
ment may seem trivial, but we have used an implicit as-
sumption that the interface thickness is independent of V
and sufficiently small compared to the representative
pattern size /. Notice that (3) has infinitely many solu-
tions, but the one with the lowest free energy should be
with well defined thin interfaces. The hypothesis has
been empirically substantiated by a simulation with very
small B, say 10 ~4 A more explicit demonstration of the
exponent equality follows.

We expect that in the true equilibrium state stripes
would be straight and parallel fairly globally. Although
this true equilibrium stripe pattern requires global trans-
port of polymers, the width of the pattern is determined
by local rearrangements of polymers. This implies that
the lamellar width is essentially determined during the
time span when the radius of the interface curvature and
the width are comparable; that is, when the dynamics is
curvature driven. Therefore, we can proceed more
explicitly with the aid of the interface equation of
motion*®: In the strong-segregation case, following Al-
len and Cahn,!? we can reduce Eq. (1) in the tubular
neighborhood of the interface to

4)

where fi is the unit vector locally normal to the interface. Introducing the Green’s function G(r,r'), defined as
V2G(r,r') = — 6(r — ') with appropriate boundary conditions, we can rewrite (4) as

Jarea [iwg;i+3w(r',t)

=L[Vy(r,0)-a(r,0)]V-d(r,2). ()

Since Vy- i =0y/dn is sharply peaked about the interface, we can integrate both sides of (5) over the local coordinate

n, perpendicular to the interface, to get

fdnfda'G(r(a,n),r,-(a’,t))v(ri (a',t))+ Qyo) —lednfd G, y(r,t) =LK(ri(a,1)), 6)
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where a collectively denotes the coordinates along the in-
terface, K is essentially the mean curvature of the inter-
face, and yy is the modulus of the equilibrium value of
the order parameter far away from the interface. Let us
assume that there is only one relevant length scale, /.
A simple dimensional analysis gives us [dal=[/19""
[G1=011%77 [wl=0)/l), [K1=0U1"", and [dn]l=1.
Hence we can reduce Eq. (6) to the following formal re-
lation:

W, w1
Wt T

Notice that the terms on the left-hand side of the formal
equation (7) do not occur at the same time. For the or-
dinary spinodal decomposition the second term is absent
since B =0 in this case, and we obtain /~t '/, as found
by Kawasaki and Ohta.** For the BCP microphase sep-
aration, on the other hand, we do not have the first term
which originated from the interface displacement. Con-
sequently, we find that / ~N?3 in agreement with exper-
imental results. Thus actually, % is twice the growth ex-
ponent for the spinodal decomposition. The derivation of
2¢ =0 from the comparison with the CH equation sug-
gests that this relation should hold even if the thin-
interface condition is not satisfied. The derivation im-
plies that 2¢ =0 if the interface structure in spinodally
decomposing and BCP systems is similar. By dimension-
al analysis, when the interface thickness is significant
and the surface diffusion dominates the coarsening pro-
cess, [(1)~1 ' is expected.'® This region corresponds to
the weak-segregation case for BCP’s, in which ¢= 1, as
mentioned above. Thus, indeed 8 =2¢ holds.

In summary, we have demonstrated that there is a
direct relation between the equilibrium lamellar thick-
ness for the block copolymer system and the asymptotic
growth law for spinodal decomposition of, e.g., binary al-
loys.
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FIG. 2. The pattern after 7000 time steps for (a) B =0.002
and (b) B=0.02. (k) is sufficiently equilibrated by then. (c)
The empirical relation between (k)eq=D and B. The line has
the slope 0.254 corresponding to the best fit.



