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Field-Gradient Eff'ect in Quantum Beamstrahlung
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The correction terms to the Sokolov-Ternov radiation formula due to variation of the magnetic field

strength along the electron trajectory are calculated up to the second order in the power expansion of
I3z/8, where z is the formation time of radiation. It is found that the field-gradient effect reduces radia-
tion intensity in the classical regime, and enhances it in the quantum regime. This is then applied to
quantum beamstrahlung with Gaussian variation in e+e bunch currents. The correction is shown to be
substantial for beam parameters suggested by Himel and Siegrest.
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For future e+e linear colliders, radiation induced by
beam-beam collisions is expected to be very strong. '

This radiation, called beamstrahlung, would cause a sub-
stantial loss of energy and the degradation of energy
resolution. As a result of these concerns, the study of the
subject has been intensive during recent years. In the
calculations done so far, the field was typically treated as
locally uniform. The following question arises: On what
scale must the field be uniform for this treatment to be
valid?

Recently one of us (P.C.) initiated an investigation3
on the corrections to the uniform-field treatment propor-
tional to 8 /8 and 8/8 in the field variation. However,

because of the deficiency of the mathematical techniques
employed, the result was inconclusive. Here we present
an improved calculation that gives a definitive evaluation
of quantum beamstrahlung that includes the field-

gradient effect.
Our aim is to evaluate the average energy loss of the

entire beam. To achieve this we want to derive the radi-
ation intensity of one electron that sees the local field
and its gradient arising from the oncoming positron
beam. Our approach follows the spirit of Schwinger,
and of Baier and Katkov on quantum synchrotron radi-
ation. It has been shown that, to the accuracy of 1/y,
the radiation intensity in the Coulomb gauge,
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where a=,» is the fine-structure constant, ( and 8' the initial and final energies, (ti, ri) and (t2, r2) the initial and

final coordinates of the electron, respectively, (co, k) the four-momentum of the photon, u ro/8' ro/(8 —co), z-t2
—t~, v=(r2 —r~)/z, and n k/to. Let t =(tt+t2)/2, then fdt~dtq fdzdt. The photon angle in the phasecan be easi-

ly integrated to obtain exp[iu8z~v~ —Il/(u8z~v~ —i0). Next we make a Taylor expansion of ri and r2 (thus v)
and v~ and v2 around t, to the order z, which gives v~. v2=v —z v /2 —z v 'v'/24 and ~v~ 1
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If we define x —= yvz/2, and y —=2uh/3vy, Eq. (2) can then be rewritten as
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It can be seen that the dominant contribution corresponds to the region where x- 1, or r-1/vy. We shall therefore
define a "radiation formation length, "!R=1/vy, which characterizes the length that an electron travels during an emis-

sion process. Integrating over x, we get Bessel functions of fractional order with argument y. For convenience we write
dI/dt =dI p/dt +dI2/dt, with

and
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In the above expression the vector products v v' and v 'v' have been replaced by 88 and 88. This is because the only

components that v' and v' contribute are proportional to v&& B and vx B, respectively. The term dip/dt corresponds to the
synchrotron radiation intensity in uniform fields derived by Sokolov and Ternov, 6 and many others. s The term dI2/dt
corresponds to the correction to the leading behavior arising from the local field gradient.

Next we proceed to integrate over u in Eqs. (5) and (6). Recall that u =co/(8 —co); thus co dco=8 u du/(1+u) .
For this purpose it is convenient to introduce the representation
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where —k & X & 0, and the I 's are the gamtna functions. We then straightforwardly obtain
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The asymptotic forms of the above equations can be derived by closing the contour to the right for Y «1, and to the
left for Y»1. Thus we find
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The above expression for Y «1 is the well-known formula for classical synchrotron radiation, and that for Y»1 is the
so-called Sokolov-Ternov formula for quantum synchrotron radiation.

The classical limit of dI2/dt has relevant poles at s =n =1,2, 3, . . . , i.e.,
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For the quantum limit, the relevant poles are at s = —n/3 [n =2, 3, . . . , but excluding n =5,7, 11,13, . . . (mod 6 )]. So
we have
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Comparing Eqs. (11) and (12) with Eq. (10), we see that the field-gradient correction does not contribute at the lead-
ing order (-Y ) in the classical limit, and scales as ljIY t in the quantum limit, which confirm qualitatively our previ-
ous findings in Ref. 3.

To appreciate the field-gradient effect in quantum beamstrahlung, let us consider a Gaussian variation of the field

strength along the electron trajectory provided by the oncoming beam: B(t)=B,exp( —2t /o, ), where the time of
flight in the c.m. frame is t =z/2. Since Y is proportional to B, it varies the same way, i.e., Y(t) =Ypexp( —2t /crz). It
can also be seen that lR = I/Uy =X,y/Y(t).

The leading behavior of the fractional energy loss of the electron, from Eq. (10), is
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The integration of the correction term dIz/dt is not easy, particularly when Yp»1, because the leading term in the
series expansion of dip/dt does not dominate the integration. If one insists on applying the asymptotic form of dIPdt in

Eq. (12), one is forced to introduce a cutoff in the integration over time, which renders the evaluation of ez inconclusive.
This was the situation of our previous calculation. The cutoff symptom, however, can be avoided if one integrates over t
before the s integration in Eq. (9).

First we notice that for a Gaussian field, B vanishes at t = ~ ~. Thus integration by parts in t turns B/B into B /B,
and we get
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The integration over time can be further developed by our changing the variable to Y:
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where ——', & k & 0. For small e, we close the contour to the right, where the leading pole is at s =0, and all higher
poles vanish. So
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On the other hand, e2 for Yo « 1 can be trivially obtained
as

10-2 ) 00 ) 02 104
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FIG. 1. Numerical plots of functions in Eq. (14). The solid
curve is the integrand Q(Y), which is independent of specific
variations of the field B. The dashed curve is the correction to
the fractional energy loss, t.'2, as a function of Yp, with Gaussian
variation of B assumed.

transverse distribution, which is rather intricate. In-
stead, we assume a uniform transverse density profile,
and look at a typical electron that has an impact param-
eter r =rr, .In this case Yo=5094» I, and we find

agro=30%. This is indeed a substantial eff'ect. In com-
parison, e2/ep —45% at r =rr„/2 and e2/to=20% at the
beam edge r =2o.,*. For the next generation of e+e
linear colliders at around 1 TeV in the center-of-mass
energy, the effective beamstrahlung parameter Yo is ex-
pected to be of order unity. Therefore, the field-gradient
eff'ect would not be a concern, as can be seen from Fig. l.

We appreciate many stimulating discussions with
M. Bell and J. S. Bell of CERN, who have recently ob-
tained an expression which is identical to our Eq. (12),
and with R. Blankenbecler, S. D. Drell, T. Himel, R. D.
Ruth, and P. B. Wilson of SLAC. This work was sup-
ported by the U.S. Department of Energy, Contract No.
DE-AC03-76SF00515.
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For intermediate values of Yo, it is difficult to find an an-

alytic expression for e2.
A numerical integration of Eq. (14) is plotted in Fig. 1

for Yo from 10 to 10 . We see that the effect due to
the field gradient is to reduce the fractional energy loss

for Yo«1, and to enhance it for Yo»1. The transition
occurs at around Yp = 3, which corresponds to the situa-

tion where the initial electron energy is equal to the criti-
cal energy of synchrotron radiation.

As an example, consider the Himel-Siegrest parame-
ters for a conceptual 5+5 TeV linear collider, where

y 10, the number of particles per bunch is %=1.2
&10, and the beam size is cr, =2.5 A, cr, =0.4 pm.
The beamstrahlung parameter Yo corresponds to twice
the local field strength (i.e., ~B~ = ~E ), and varies
with radius. Thus the evaluation of the mean value of
e2/eo for the entire beam involves an average over the

'See, for example, B. Richter, IEEE Trans. Nucl. Sci. 32,
3828 (1985).
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