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Quantum Statistics of a Squeezed-Pump Laser
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A laser with squeezed-pump fluctuations is found to oscillate with one of two macroscopically distinct
phases. The phase diffusion rate is reduced belo~ that of the usual laser and the output light may have
amplitude fluctuations reduced below the vacuum level.
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There have now been several experiments which gen-
erate squeezed states of light. ' Squeezed light has less
fluctuations than the vacuum in one quadrature phase of
the electromagnetic field. These demonstrations of
squeezed-light generation are all in passive systems
where there is no pumping of the optical medium.

In contrast to this there has been the approach taken

by Yamamoto, Machida, and Nilsson who have ana-
lyzed the consequences of pump-noise suppression in a
laser. They show that the photon-number fluctuations of
the laser output can be reduced compared to the usual
incoherently pumped laser, if the amplitude fluctuations
of the pump are reduced. Machida and co-workers
have recently demonstrated the operation of a semicon-
ductor laser pumped with an electron beam with reduced
fluctuations and shown that the output light has a 7.3%
reduction in number fluctuations below the standard
quantum limit.

A related effect is found in theoretical studies of the
micromaser, where single excited atoms are fed into the
laser cavity. If a constant velocity distribution of the
atoms and hence a constant interaction time is assumed,
the output of the micromaser is predicted to have sub-
Poissonian statistics.

Other techniques have been suggested to reduce the
quantum noise of the laser, either by feedback methods
or by squeezing of the vacuum fluctuations entering the
laser cavity.

In this paper we shall squeeze the pump fluctuations in

the laser. The laser is modeled as an ensemble of N
two-level atoms interacting with a single-mode unidirec-
tional field tuned to the atomic resonance. This is a
standard model used for the quantum statistics of the
laser, and is appropriate for a homogeneously broad-
ened solid-state laser. The fluctuations in the laser arise
from the pumping and spontaneous emission of the
atoms and the vacuum fluctuations entering the cavity
mode. We shall consider an optically pumped laser
where the pump fluctuations are reduced by pumping the
laser medium with squeezed light. In an actual system

this would require a three-level medium where two of the
transitions are pumped with correlated light beams as,
for example, from the output of a nondegenerate para-
metric oscillator or four-wave mixer. ' In our theoreti-
cal model an effective two-level medium interacts with a
squeezed pump. The squeezed light is assumed to be
broadband, a condition that requires the cavity linewidth
of the parametric oscillator to exceed by an order of
magnitude the natural linewidth of the atoms in the laser
medium. The squeezing of the pump is characterized by
an effective squeeze parameter including the spontane-
ous-emission contribution which reduces the effective
squeezing of the pump. The spontaneous-emission con-
tribution becomes less important as the laser goes higher
above threshold.

In a recent paper" we considered the atoms to be
pumped with a squeezed vacuum (for example, the out-
put of a parametric oscillator below threshold). In this
paper we shall consider the atoms to interact with a
squeezed field with a coherent amplitude e =

~
e

~

e'~

(e.g., the output of a parametric oscillator below thresh-
old). Depending on the relative phase y of the driving
field and the squeezed quadrature in the bath, one is able
to describe a pumping process where the pump itself
displays sub- or super-Poissonian statistics.

The effect of irradiating the atoms with squeezed light
is to modify the decay rates of the atomic polarization. '

The Maxwell-Bloch equations of the atoms and field
variables (in a frame rotating at the rate of the atomic
transition frequency) in the semiclassical limit are given

by

ax = —K'ax+gvx~ ay = —x'ay+gvy&

i = —y~ (1+M) v„+gDP„,

v»
= —y&(1 —M)v»+gDP»,

D —ytD+ yN —4g(v„P„+v»P»).

Here a a +iay is the amplitude of the laser mode,
v v„+ivy is the atomic polarization, and D is the atom-
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ic inversion of the N atoms. P=a+e*/g, where e is a
coherent field driving the atoms. g stands for the atomic
dipole coupling and ~ is the cavity decay rate. y[[ de-
notes the decay rate of the atomic inversion, which is

given by yt = y(2n+1), where y is the natural linewidth
of the atoms. The polarization decay involves two time
scales,

y„=y&(1+M), y»
= y&(l —M),

where

M [n(n+1)]' /(n+ & ) 6 (0, 1)

(2)

(3)

is a parameter describing the amount of squeezing, n be-
ing the mean photon number in the squeezed bath cou-
pled to the atoms. Elimination of the atomic variables
adiabatically from Eq. (1) yields the following set of
equations:

a„«[cR '(1 —M)P„—a„]:=A„(a„,a»),

a» =«[cR '(1+M)P» —a»]: =A»(a„,a»),

where

c -g'Dp/y~«. ,

(4)

(5)

and Dp is the steady-state inversion below threshold.
The saturation denominator reads

R —=R(P„,P»)
2 2

(1 —M )+ (1 —M)+ (1+M),
np np

with

n p yll yi/4g.
In the case of a squeezed-vacuum pump the stable

steady-state solutions were found to be in phase with the
low-noise quadrature in the squeezed bath. " If one in-

cludes a classical driving field (assumed to be either
purely real or purely imaginary) the semiclassical sta-
tionary points are easily seen to be the roots of a polyno-
mial factorizing into a quadratic and a cubic. ' The sit-
uation may be illustrated by means of the semiclassical
potential @(a„,a»), defined by'

8@(a„,a»)/8a„= —A (a„,a»),

8@(a„,a» )/Ba» = —
A» (a„,a» )

[with A„and A» given in Eq. (4)], which gives

&(a„,a») = —,
' «[a„+a» —cnplnR(P„, P»)].

The results for the atoms interacting with a squeezed
vacuum (c=0) have been discussed in Ref. 11. We plot
the potential in Fig. 1(a), in order to demonstrate that
the phase symmetry of the usual laser is broken for
nonzero M, even in the case of a zero driving field t..~

FIG. 1. The potential function 4(a„,a») of the squeezed-

pump laser above threshold. (a) Squeezed-vacuum pump,
M 0 6, c 2. (b) Antibunched input, M 0 9, c 10,

I e/g I
-4.

The squeezed bath acts to imprint a particular phase
onto the steady state as is seen from the existence of two
local minima on the imaginary axis. The two stable
solutions with phase differing by z are in phase with the
low-noise quadratures of the squeezed bath. We show in

our discussion of the laser gain given by Eq. (11) that
the gain is greatest for these phases (p ~ n/2). This is

different from the symmetry breaking which occurs in

the laser with injected signal and also from the micro-
maser where only one phase is stable. The squeezed-

pump laser will oscillate with a macroscopic coherent
amplitude and may have a phase of either +x/2 or
—x/2. This suggests the intriguing possibility of obser-
vation of macroscopic quantum coherence' in this opti-
cal system.

If e is chosen nonzero and purely imaginary and M is
assumed real and positive, which corresponds to a pump
with reduced amplitude fluctuations, the coherent field
with phase y=z/2 destroys the "degeneracy" in Fig.
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1(a) by making the potential well along n/2 deeper than
the one along —x/2. Thus the laser oscillates with a
preferred phase of rc/2, that is, in phase with the
coherent field.

For a field with reduced phase fluctuations, that is, e
purely real, however, there is a tradeoff between a ten-
dency to lock the laser phase p to the phase y=0 of the
driving field and a tendency to lock to p = ~ n/2 as a re-
sult of the phase-dependent gain brought about by the
squeezed bath. This results in two stable steady states in
the first and fourth quadrants which lie symmetrically
about the real axis.

In a fully quantum mechanical treatment the atomic
and field variables are described by Langevin equations
which add fluctuating forces to the Maxwell-Bloch equa-
tions (I ). If one adiabatically eliminates the atomic
variables [assuming tc« y~(1+ M)] from these equa-
tions, one finds the following Langevin equation for the

field amplitude in the case of a squeezed-vacuum pump:

a =G (a, a*)a —a„~+I,' ',

where

(io)

G(a, a*)=x —1+ (1 —e 'sM)
1 —M

for a WIe '~ and

1 —e '~M ~a[ a a
Q„] 7CCQ

—M +
(1 —M ) np 2np 2np

(i2)

Note that Eqs. (10) and (12) constitute a generalization
of our previous results, " where we assumed weak
squeezing and linear M dependence. The correlations of
the total stochastic force including noise stemming from
the atomic variables (cf. Haken's "noisy slave" ) read

(I,"'(t)I,'"(t')) f(1+M )y(n+1)N 2y M —(N+D))lb(t —t'),
y (1 —M')

(r."'(t)r.'"(t')
&
=

2

z fy&M(1+M )(N+D) —2My(n+1)N) b(t t'). —
y (i —M')

Dst (I,&) = (vc/2I) (1+n)/(1+M). (i4)

Equation (10) is a rotating-wave van der Pol oscillator
equation with a phase-dependent gain. It is clear that
the gain G is largest for p + n/2; hence a steady-state
field with either of these phases is built up above thresh-
old.

Converting the Langevin equation (10) to intensity
and phase variables, we can derive the phase diffusion
coefficient evaluated about the stable steady-state solu-
tion I with phase p ~ n/2. We find

D&& (1/2I)g N2/y&, (is)

1V2 being the number of excited atoms in the steady
state.

In Fig. 2 the phase diffusion coefficient Dtt, is plotted
against the photon number n in the squeezed bath for the

t For M 0, this expression reduces to the usual phase
diffusion rate due to spontaneous-emission noise, which

may be written as

8-

2-

0-
I
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FIG. 2. The phase diffusion coefficient D« for the laser at 10% above threshold. Solid line: usual laser (n 0); dashed line:
squeezed-pump laser (e 0).
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FIG. 3. Spectrum of fluctuations in the amplitude quadrature with antibunched pump for fixed output intensity. Solid line:

M 0.47; dashed line: M 0.70; dash-dotted line: M 0.93.

V(Xe, to) e'"'&X e(z),X e( 0)) dz, (16)

where Le is a quadrature-phase operator. This spec-
trum for a laser with a squeezed pump corresponding to
reduced amplitude fluctuations is plotted in Fig. 3. We
see that for increasing values of the squeeze parameter
M, there is a reduction in the output fluctuations below
the level of the vacuum fluctuations. This leads to a
laser with a sub-Poissonian output, a feature similar to
that achieved in a semiconductor laser with suppressed

pump fluctuations. '

We have investigated a new class of active lasing sys-
tems which oscillate with a finite coherent amplitude and

may exhibit quantum coherence between two macroscop-
ically distinct phases. The linewidth of these lasers are
substantially reduced and, for a pump with reduced am-
plitude fluctuations, the output photon statistics may be
sub-poissonian.
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laser operating 10% above threshold. We see that the
effect of the squeezed pump is to reduce the phase
diffusion coefficient —and hence the laser linewidth—significantly below the level of an ordinary laser. We
note that a similar effect has been found by Gea-
Banacloche for a laser with a squeezed vacuum entering
the cavity. In this case a reduction of the phase diffusion
coefficient by a factor of 2 may be achieved, although
this occurs about an unstable state.

The quantum statistics of the output light may be cal-
culated from the Langevin equation (10). In particular,
we have calculated the spectrum of fluctuations in the
quadrature phases of the output light's:
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