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Finite-Element Analysis of Low-Energy e +-H Scattering
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Accurate S-wave phase shifts for low-energy (0.1 ~ k ~0.7) positron-hydrogen scattering have been
calculated by use of the finite-element method. Simple criteria are developed for which the truncation of
the relevant configuration space and its subsequent discretization appear to be optimized. These criteria
are expected to be independent of the details of the collision system.
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In this article we describe some details of a successful
calculation of the S-wave phase shifts for low-energy,
positron-hydrogen scattering using the finite-element
method. ' This method has been applied to a variety of
physical problems over the past years. Its use here is

the first time that the e+-H scattering problem has been
solved without the use of Hylleraas functions. Since the
accuracy of the phase shifts obtained via the finite-
element method (FE) is comparable to that obtained in

previous calculations, the FE method is thus sho~n to be
a feasible numerical alternative for solving few-particle
atomic scattering problems.

Because it is simple and direct, there are several ad-
vantages to our using the FE method: First, the
Schrodinger equation is solved numerically, subject to
the appropriate scattering boundary conditions; second,
no globally defined expansion basis is required; and third,
electron-positron correlation is automatically incorporat-
ed into the wave function. In addition, there is no dif-
ficulty, in theory, in extending this approach to many-
particle systems.

In the past, the application of the FE method to even
the simplest systems has been limited because of the long
central processing unit (CPU) times required for the

generation and inversion of the large FE matrices. How-
ever, the FE algorithm is well suited for vectorization,
and the use of array processors has typically led to great-
ly reduced CPU time. In the present case, a factor of 10
reduction was achieved with a STAR array processor to
generate the FE matrices. Thus, problems previously
deemed formidable are now within computational limits.
The rapid advance in computer technology suggests that
the FE approach will continue to be an attractive alter-
native for solving problems in atomic and molecular
physics.

In the next section of the paper, the FE formulation of
the e+-H scattering problem is described. Since exten-
sive literature exists on the subject of finite elements, in-

cluding applications to quantal bound-state and scatter-
ing problems, only a brief outline of the algorithm is
given. Results of the calculation are then presented and
compared with the phase shifts obtained in seven previ-
ous calculations, ' including the highly accurate bound
calculations of Bhatia et al.

The FE method is a numerical algorithm for solving
operator equations via the use of piecewise interpolating
polynomials. In the present case, we apply the method to
the Schrodinger equation for S-wave elastic scattering of
positrons from atomic hydrogen, viz. ,
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where r is the electron-proton distance, s is the positron-
proton distance, and cos8=(r s)/rs. (Atomic units are
used throughout. ) The total energy is E=(k —1)/2,
where k is the positron momentum. The asymptotic
boundary conditions for E below the threshold for posi-
tronium formation are
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tlt(r ea, s,cos8) 0 (2a) where 8 is the unknown S-wave phase shift.
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In our solving Eq. (1) by the FE approach, the coordi-
nate space spanned by r, s, and cosO is truncated by
choosing cutoff values for r and s, at which points it is

assumed appropriate to impose the asymptotic boundary
conditions. The truncated three-dimensional space is

then discretized into small elements by the placement of
nodes, which become the corners of the (three dimen-
sional) elements.

In each element n, the global wave function y is ap-
proximated by a local wave function y", given as a linear
combination of products of cubic Hermite polynomials ':
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The polynomials p are defined only within a particular
element and have the unique property that the expansion
coefficients y,ik are the value of the unknown wave func-
tion (and seven partial derivatives) at the eight nodes of
the element. 6 Substituting Eq. (3) into Eq. (1) and in-

tegrating over the volume of the element, one obtains a
set of linear coupled equations for each of the y;ik, which

in vector form are

(H" —EU")y'" =0.

The local matrices H" and U" are symmetric and of or-
der 64. Note that U" is not the ordinary unit matrix,
but involves the product of the Hermite polynomials in-

tegrated over the volume of the element. The integration
is done numerically, with eight-point Gauss quadrature.

In order to guarantee the continuity of the global wave
function, the locally defined functions t|I" must be
smoothly matched at the element boundaries. This is
achieved by our mapping the local matrix H" for each
element onto a single global matrix H, and similarly,
mapping U" for each element onto a global matrix U.
The global matrices are symmetric and sparse. The local
vector y" for each element is mapped onto a single glo-
bal vector y of order 8N, where N is the total number of
nodes in the three-dimensional grid.

Boundary conditions are imposed on the global equa-
tions by requiring that the components of y correspond-
ing to a node at r =r, satisfy Eq. (2a); similarly, com-
ponents of y corresponding to a node at s =s, are re-
quired to satisfy Eq. (2b). The linear coupled equations
can be expressed as

(H —EU ) yr =A+ tan 8 B,

where A and 8 are the vectors obtained when H —EU
operates on the components of yr which are determined
from the boundary conditions. The order of the global
matrices in Eq. (5) is 8(N —M), where M is the number
of boundary nodes, i.e., nodes at r =r, or s =s, . One can
now solve Eq. (5) for the remaining unknown expansion
coefficients corresponding to the value of the wave func-
tion (and its derivatives) at the nonboundary nodes. The
global wave function y(r, s,cos8) is obtained by our
multiplying the expansion coefficients by the locally
defined basis set given in Eq. (3). Introducing the vector

p, whose components are the products of the Hermite
polynomials for each global node, one can express the
global function y as a scalar product of two vectors:

y(r, s,cos8) =[(H —EU) '(A+tanBB)] p(r, s,cos8).

Using Eq. (6) in the integral formula for the phase shift, ' one obtains an expression for tan6,

2k 'f[(H —EU) 'Al pe '[sin(ks)/s][ —2s '+2/ir —si]r s drdsdcos8tan8=
1 —2k 'f[(H —EU) 'B] Pe '[sin(ks)/s][ —2s '+2/ir —si]r s drdsdcos8

(6)

Although one can in principle extract the phase shift
directly from the FE wave function, the results are so ex-
tremely sensitive to the accuracy of the wave function at
s, that it is difficult to obtain stable values for tan8. On
the other hand, phase shifts obtained via Eq. (7) are re-

markably insensitive to the accuracy of the FE wave

function near s, . The integral-formula approach is also
a better indicator of the overall accuracy of the calculat-
ed wave function, particularly in the region where the
positron-hydrogen interaction is strong.

The accuracy of the FE solution depends on both the
truncation and the discretization. It is evident that one
must choose the cutoff values r, and s, large enough to
guarantee that the appropriate asymptotic behavior can
be imposed, yet small enough to avoid excessive CPU
times. In the present case, r, was set at Sao, on the basis
of previous FE calculations on atomic hydrogen.

Many test cases were required before criteria were

determined for choosing s„sinceour initial studies led to
unstable values of tan 8'. Stability was fairly well

achieved when s, was made large enough to include a
full de Broglie length X, where k=2m/k. (For k=0. 1,
keeping CPU time to a manageable amount meant that
s, was smaller than a full wavelength, thus leading to a
slightly higher error in tan6' than for other values of k;
note also that this is the only case where the phase shift
lies above the value obtained by Bhatia er al. ) In addi-
tion, the error in tan8' was significantly reduced if s, was
chosen such that tan(ks, ) =1. This is accounted for by
our noting that the asymptotic wave function, Eq. (2b),
is a linear combination of sin(ks)/s and cos(ks)/s, and in

order to extract an accurate value of tan6, the error in

both terms should be minimized. Both of these functions
and their derivatives are smooth when tan(ks) =I and
the error in matching the FE solution to the asymptotic
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TABLE I. Finite-element nodes for e+-H scattering.

0. 1

0.2
0.3
0.4
0.5
0.6
0.7

Nodes along s
(and r, r (Sap)

0 1 2 4 6 8 12 16 24 32 39.27
01 246 8 12 18 243035.34
0 1 3 5 8 11 14 17 20 23.56
0 1 3 5 8 11 14 17 20 23 25.52
0 1 3 5 8 11 14 17 20.42
0 1 3 5 8 11 14 17 20 22.25
0 1 3 5 8 11 14 17 1907

Number of
elements

200
200
144
160
128
144
128

0.152
0.188
0.166
0.118
0.061
0.003

—0.053

wave function is therefore minimized, resulting in a more
accurate value for the phase shift.

Ideally, one would like first to determine r, and s, and
then experiment with the grid. In practice, the variation
of both the cutoff values and the location of the nodes
must be carried out simultaneously. One of the particu-
lar goals of this calculation was to determine a method
for choosing an optimal grid that does not rely on a com-
parison of the FE phase shift with those determined by
other means. No rigorous lower-bound principle is valid
in this case; in addition, numerical error may arise from
truncation, discretization, or the numerical integration of
Eq. (7). It is important to note that a larger error in the
wave function can be tolerated in regions of space where
the contribution to the phase-shift integral is small,
whereas the wave function must be reasonably accurate
in the regions of space where the contribution to the in-

tegral of Eq. (7) is large.
An optimal discretization for cos0 was relatively easy

to establish and was independent of the incident positron
momentum. All reported calculations were done with
only five cos0 nodes, placed at cos0= —1, —0.2, 0.5,
0.94, and 1, a grid that reflects the strength of the poten-
tial as a function of the angular separation.

In order to obtain the best positron-electron correla-
tion, an identical discretization in r and s was used for
values less than r, . The phase shift was most sensitive to
the discretization in the region s & r„where the poten-
tial is strongest and the contribution to the phase-shift
integral is the largest. For k ~ 0.3, the contribution to

the phase-shift integral is extremely small beyond s
=5ao. This is not true for smaller incident positron
momentum. As a result, a slightly finer discretization is
used for k =0.2 and 0.1 in this region. For k =0.1, there
is a small but significant contribution to the phase-shift
integral even beyond s =8ao, since the grid spacing is
larger in the region s )8ao, this may contribute numeri-
cal error in the integration of Eq. (7) for this case.

For r, ~ s ~ s„nodes were evenly spaced at intervals
of 3ao for k ~ 0.3. It is worth noting that for the case of
k =0.7, a mere three nodes per de Broglie wavelength
was sufficient to approximate the wave function in this
region. Since the de Broglie wavelength is much larger
for k =0.2 and k =0.1, the interval size was increased to
6ao and 8ao, respectively. All results were very stable
with respect to variation of the nodes in this region, and
in some cases, even larger intervals gave accurate results.

Table I lists the node sites for r and s and the values of
the phase shift. It should be noted that in some cases, it
is possible to improve individual phase shifts slightly by
the adjustment of the location of the nodes in particular
regions of space. However, the point of this calculation
is to show that using the criteria for discretization and
truncation that we have developed, one can obtain accu-
rate results for elastic scattering without attempting to
optimize the mesh at each energy. Furthermore, the
phase shifts are stable to within 0.002 for small varia-
tions in the mesh. Therefore, we have chosen to quote
the results using almost identical grids for each value of
incident positron momentum. With a STAR array pro-
cessor to generate the FE matrices, the total CPU time
for each phase shift was less than 1 h. The FE results
are compared with phase shifts obtained from other cal-
culations in Table II.

In conclusion, we have shown that the FE method
offers an alternative approach to solving few-body
scattering problems. In implementing the FE method,
we have developed a simple algorithm for truncation and
discretization that is expected to be independent of the
details of the system.
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TABLE II. Comparison of S-wave phase shifts for e+-H scattering.

Reference
0.1 0.2 0.3 0.4 0.5 0.6 0.7

Finite element
Schwartz
Bhatia et al.
Houston and Drachman
Stein and Sternlicht
Register and Poe
Doolen et al.
Winick and Reinhardt

8
9

10
12
13
11
14

0.152
0.151
0.1483
0.149
0.148
0.146
0.146
0.149

0.188
0.188
0.1877
0.189
0.187
0.185
0.183
0.177

0.166
0.168
0.1677
0.169
0.167
0.165
0.164
0.155

0.118
0.120
0.1201
0.123
0.120
0.117
0.119
0.119

0.061
0.062
0.0624
0.065
0.062
0.059
0.062
0.064

0.003
0.007
0.0039
0.008
0.003
0.000
0.003
0.003

—0.053
—0.054
—0.0512
—0.049
—0.052
—0.057
—0.052
—0.051
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nical advice and assistance in coding the STAR array
processor. We are also grateful to Zeki Kuruoglu for his
helpful discussions and suggestions throughout this pro-
ject.

T. J. Chung, Finite Element Analysis in Fluid Dynamics
(McGraw-Hill, New York, 1978); G. Strang and G. Fix, An

Analysis of the Finite Element Method (Prentice-Hall, Engle-
wood Cliffs, 1973); K. Bathe and E. Wilson, Numerical
Methods in Finite Element Analysis (Prentice-Hall, Engle-
wood Cliffs, 1976).

2A. Askar, J. Chem. Phys. 62, 732 (1975); G. D. Barg and
A. Askar, Chem. Phys. Lett. 76, 609 (1980), and references
therein.

M. Friedman, Y. Rosenfeld, A. Rabinovitch, and R. Thie-
berger, J. Comput. Phys. 26, 169 (1978); A. Rabinovitch,

R. Thieberger, and M. Friedman, J. Phys. B 1$, 363 (1985),
and references therein.

4C. Bottcher, J. Phys. B 14, L349 (1981), and 15, L463
(1982).

5W. K. Ford and F. S. Levin, Phys. Rev. A 29, 43 (1984).
6F. S. Levin and J. Shertzer, Phys. Rev. A 32, 3285 (1985).
7R. Kozack and F. S. Levin, Phys. Rev. C 36, 883 (1987).
SC. Schwartz, Phys. Rev. 124, 1468 (1961).
A. K. Bhatia, A. Temkin, R. J. Drachman, and H. Eiserike,

Phys. Rev. A 3, 1328 (1971).
' S. K. Houston and R. J. Drachman, Phys. Rev. A 3, 1335

(1971).
''G. Doolen, G. McCartor, F. A. McDonald, and J. Nuttall,

Phys. Rev. A 4, 108 (1971).
'zJ. Stein and R. Sternlicht, Phys. Rev. A 6, 2165 (1972).
'sD. Register and R. T. Poe, Phys. Lett. 51A, 431 (1975).
' J. R. Winick and W. P. Reinhardt, Phys. Rev. A 18, 910

(1978).
'sY. N. Demkov, Variational Principles in the Theory of

Collisions (Pergamon, New York, 1963), p. 80.

1092


