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Evolution of Surface Patterns on Swelling Gels
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A simple model, describing a network of springs moving against friction, is used to study the evolution
of surface patterns on a gel undergoing uniaxial expansion. The nonlinear growth equation obtained
adequately describes the key experimental observations, such as the scaling of the typical size of patterns
and the formation of cusps. The dynamics is carried on a computer, and the patterns obtained are in

qualitative agreement with experiments.

PACS numbers: 61.41.+e, 05.70.Ln, 68.10.La, 82.70.Gg

Complex physical and biological patterns can evolve
from simple underlying equations. Linear stabilities, in-

teraction of different modes through nonlinearities, are
some of the ingredients for the formation of such pat-
terns. These phenomena have been extensively studied
in the context of formation of dendrites and snowflakes. '

Here we examine patterns that form on surfaces of ex-
panding gels. Observed first experimentally by Tanaka2
these patterns are present on surfaces of gels undergoing
a discontinuous volume expansion 3 (induced by changes
in temperature, pH, etc.). As the gel swells, initially
very fine patterns appear on an originally smooth sur-
face. With further expansion, the units of the pattern
coalesce, forming similar patterns at successively larger
length scales. A cross section of the gel reveals that the
pattern is composed of smooth arcs coming together with

cusp-shaped singularities. From the top, these singulari-
ties form a honeycomblike network. The general under-

lying mechanism for formation of such patterns has been
correctly attributed to mechanical (elastic) instabilities

by a number of authors4 from analysis of equilibrium
theories of various complexities. However, the mecha-
nisms for the taming of the mechanical instabilities and
the formation of cusp structures have not been investi-

gated; a complete dynamic description of the evolution of
these surface patterns has been lacking.

Here we introduce a very simple model (a network of
springs expanding against friction in 1+1 dimensions)
for the gel and show that it can account for all of the key
observed phenomena concerning these patterns. After
making some reasonable assumptions regarding the
strains and the taming of instabilities by interactions, we
can actually follow the evolution of patterns on a com-
puter. The basic results in 1+1 dimensions are a swol-

len layer of thickness l(t) (measured from the surface of
the gel) growing diffusively with time; for large enough
expansion, a band of unstable modes developing for
transverse fluctuations over a range of wavelengths pro-
portional to l(t); formation of cusps as a result of insta-
bilities and lateral motion of the particles; and the
hierarchy of cusp evolution. Simple extension of the
model can also account for patterns in 2+ 1 dimensions.

We model a rectangular slab of gel by a square lattice

as shown in Fig. 1. The total potential energy stored in
the springs during swelling is given in the continuum
liinit by

0=—d'xI(( tlpr (
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where

(1);r( =[(8;rp) +(tI;rt) ]'
is the spring length in the e; direction.

For a uniaxially growing slab, the bottom surface
(xp =0) is fixed and hence undeformed [i.e., r(xp
=O, xt, t) =xtei], while the top surface (xp=lp) is free
and does not support any normal or shear forces. The
latter condition implies

Bprp(xp lp, xt, t) E,

Bpr~(xp=lp, x],t)+8 rtp( px=lp, xi, t) =0.

(2a)

(2b)
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FIG. 1. A slab of gel of thickness 10 expands uniaxially in
the eo direction; r(x, t) is the position vector of gel element x.

of beads connected by harmonic springs (of spring con-
stant K) moving in a viscous medium (of frictional co-
efficient f). Swelling is initiated by a change in the equi-
librium spring length from 1 to E at t =0. In the experi-
ment this change is induced by the variation of tempera-
ture or pH of the environment, and E-10 is quite typi-
cal. Let x = (xp, x~) be the internal label of a bead in the
spring network. The actual position of this bead is
specified by the vector

r(x, t) =rp(x, t) ep+ r t (x, t) et
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As will be shown below, this zero-stress condition for the
free surface provides the necessary short-wavelength sta-
bility and accounts for cusp formation. The effect of this
condition is heuristically included by Tanaka et al. in

the form of a bending energy, and is anticipated by Seki-
moto and Kawasaki from stability considerations. The
remaining boundary conditions, necessary to specify the
problem completely, are that the network starts off' from
equilibrium, i.e., r(x, t ~0) =x, and periodic boundary
conditions parallel to the slab of width L, i.e., r(xp, 0, t)
=r(xp, L, t) (and similar constraints on 8;r) chosen for
convenience.

In a highly viscous medium, inertial effects and kinetic
energy terms can be ignored. The elastic forces are then
balanced against the frictional forces, and the full mo-
tion of the beads is governed by the coupled differential
equations

f8, r; =b—H Irp, l, , 8Jr p, 8,r ~, . . . )//Br;.

it r, '(x, , t)

E.I(t)
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FIG. 2. Solution of the diA'usion equation at time t, and its
approximation by two linear segments; El(t) is the thickness of
the layer as measured from the surface of the gel.

the layers below, but with reduced amplitude. We fur-
ther assume that these fluctuations only exist in the
swollen region, i.e., their amplitude goes to zero as
xp lp —l(t). The simplest form of r(x, t) subject to
these restrictions is

These equations admit a uniformly expanding solution

rp(x, t) =rp (xp, t), and r~(x, t) =x~. The expansion fac-
tor rp (xp, t) satisfies a simple diffusion equation
8&rp =(K/f)8)rp, and its behavior subject to the
boundary conditions specified before is depicted in Fig.
2. As the figure demonstrates, this solution is adequately
approximated by two linear segments: a swollen layer of
thickness El(t) (i.e.,

rp(xp, x],t) =rp (xp, t)

+ [rp (xp, t) xp) w(x ~, t ),

r~(xp, x~, t) =X~+ [rp (xp, t) xp)v(x~, t).

(3a)

(3b)

This is a mean-field-type approximation as fluctuations
in different vertical layers are coordinated. Note that we

explicitly allow fluctuations in the lateral (e~) direction;
this is a key difference between this theory and that of
Tanaka et al. , and it leads to an account of the forma-
tion of cusps as will shortly become apparent.

Using the linear approximate form for rp and apply-
ing boundary condition (2b), we obtain a relation be-
tween v and w,

v(xt, t) = —l(t)8tw(xt, t).

H= d'x[([(rp —x —)'(8tw)'+ [1 —(rp —xp)18/w)'I ' ' E)'—K
2 4

+[[(8pr(~) yw8prg —w) +(8prf —1) 1 (8~w) ]' —E) ] (4)

It is worth reemphasizing that Eqs. (3) are only an approximation, and the restricted form is not exactly preserved un-

der the full dynamic equations for 8,r;. However, we believe that the form itself is reasonable and that the evolution of
w(x~, t) can now be obtained by our varying (4) with respect to w and then averaging over the xp variable. To linear

order in w, we get

rp (xp, t) =xp+(E —1)Ixp —[lp —l(t)))
for xp & lp —1(t)) on top, and an undeformed gel
[rp (xp, t)=xp for xp&lp l(t)] at—the bottom. The
thickness of the swollen layer grows diffusively since
l(t)-(Dt) ', with D=K/f.

The full set of coupled differential equations is too
complicated to be studied analytically or numerically, (3c)
and approximations must be made. We assume that any
fluctuations on the surface layer are affinely followed by From Eqs. (3) we can now express H as a functional of

w(x~, t) only, i.e. ,

8,w(x i, t) = —[D/1'(t)) [w+ —,
' (E 1)1'(t)8t'w+ —,

' 1—'(t)8i'w), (5)

valid for 1 (t)» 1.
When the expansion factor is small, Eq. (5) is stable

and no patterns appear. But for E larger than E,
=1+2J3=4.464, there is a band of unstable modes for
3 —(E —1)(lk) + (lk) & 0. The stability in the short-
wavelength limit is provided by the 8~ w term which is a
consequence of the condition of a free top surface (2b),
and resembles the bending energy that was heuristically

I
included in Ref. 3. It is clear that the unstable wave-

lengths (and hence the dominant wavelengths of the ob-
served patterns) scale as l(t) —(Dt) '1 . Nonlinearities
obtained from the variation of H[w) are then partly re-
sponsible for preventing the exponential growth of these
instabilities. [One effect of nonlinearities is to reduce the
coefficient of the 8~ w term in (5) when w is large, so that
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the unstable band is diminished. ]
Even with inclusion of nonlinearities, the function

w(xI, t) does not develop any cusps (see the dashed lines
in Fig. 3). However, w(xI, t) is not the actual surface
profile, which must also include the transverse motions of
the surface described by U in Eq. (3b), and required by
the stress-free condition of the top surface. The actual
loci of surface points is the curve h(g) obtained with
xp=lp in Eqs. (3):

h(xI, t) =lp+(E 1)1(t)[1+w(xI,t)],

((xi, t) =xI —(E —1)l'(t)tiIw(xl, t).

The profiles h(g, t) are depicted by the solid lines in Fig.
3. To see how the pattern of cusps in these profiles is

generated by the smooth curves w(xl, t) (dashed lines),
we examine the tangents at the surface,

al aP, ax, (E- I)1(t)a,w(x, , t)
t)4 t)xI t)4 1

—(E —1)1'(t)t)(

Clearly the curve h(g) develops singularities whenever
the curvature t) 1 w approaches I/(E —1)1 (t). This
singularity occurs when the horizontal components of
neighboring beads coincide, i.e., the surface becomes
folded, and it signals cusp formation as illustrated in Fig.
4(a).

Once this happens, further evolution according to the
original equations would have the beads go past each
other, which is clearly unphysical. In fact the folded re-
gions of the cusp are no longer part of the free surface,
and evolve under a different dynamical rule. When a
bead falls within the folded region, it is free to expand
vertically, i.e., t)harp(xp=lp, xi) =E, for xl 6 (folded re-

gions); preliminary calculations indicate that the forces

trying to push the beads out of the folded region are
much bigger than the forces trying to push it in. As a
result, we believe that the cusp regions are all "barely
folded. " Our numerical recipe for implementing this
effect is to evolve the beads in the folded region in such a
way that |)1w is not increased. In the final stages of pat-
tern evolution, this leads to a height-to-width ratio for a
typical buckling in the cross-sectional profile that is be-
tween —,', and —,'. The necessity for the gel surface to
fold was first suggested by Onuki. He assumed that in
equilibrium there is a ftnite width over which the surface
particles are in contact (i.e., folded), and calculated the
final shape of buckling with this width as an unknown
parameter. Our barely folded assumption corresponds to
setting this width very small during pattern evolution.

This completes the prescription for following the pat-
terns on the gel surface. Our model is completely
specified by two parameters D and E which are simply
related to the elastic moduli, viscosity, and the osmotic
pressure of the gel. The resulting patterns in Fig. 3 (cor-
responding to E =10) reproduce various features such as
scaling forms and cusps obtained in the experiments.
The origin of the cusps is the following: mechanical in-
stabilities of the swollen layer of the gel lead to height
fluctuations on the surface. The height fluctuations are
accompanied by transverse expansions of the surface
particles which brings them in contact. At this point the
particles are no longer part of the free surface and fold
in cusps. Further evolution of cusps shows that these
singularities can be removed by two mechanisms as indi-
cated in Fig. 4. Either a cusp is pushed out by neighbor-
ing regions [Fig. 4(b)], or two neighboring cusps merge
to form a single one [Fig. 4(c)]. The equilibrium profiles
obtained are in qualitative agreement with observations.

(a)

FIG. 3. The nonlinear equation of motion for w(xI, t) ob-
tained from variation of (4) is solved numerically (for E =10)
at various stages of evolution: The dashed lines, h(xI, t), are
profiles obtained when no horizontal displacement is allowed;
the solid lines, h((, t), are the surface profiles when the hor-
izontal motion is included.

(b) (c)

FIG. 4. (a) Cusps are formed when beads from the surfaces
of neighboring arcs run into each other. (b), (c) Two mecha-
nisms for the merging of cusps, as found from computer simu-
lations.
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A real gel is actually highly cross linked at random; a
more realistic model would have (weaker) springs con-
necting the diagonals of the square lattice, thus requiring
two independent elastic moduli as is expected by symme-

try considerations alone. The addition complicates
boundary condition (2a), and the uniformly expanding
solution will have an E,fr which is a function of E and
the ratio of the t~o elastic constants. The ne~ Hamil-
tonian also results in small changes in the coefftcients of
the 81w and t)t w terms in (5), but should not change the
characteristic behaviors of the solution. The reason is

that in 1+ 1 dimensions, upon the reduction of the prob-
lem to that of a free string, the additional shear energy
can only add to the string's stretching and bending ener-

gies which are already present in (1); only one elastic
constant is needed to describe a string.

Finally, we can extend our model to 2+1 dimensions

by generalizing the Hamiltonian in (1) to including an
additional transverse direction ez. However, in this case,
the diagonal springs do become necessary, because when

we try to reduce the problem down to that of a free
membrane, two elastic constants are now needed to de-
scribe its dynamics, even though the presence of diagonal
springs in planes perpendicular to the surface still adds
nothing new. Despite this difference, we believe that the
characteristics of the cross-section profiles found in 1+1
dimensions are preserved; and indeed a simulation of the

2D version of the linear growth equation (5) resulted in

formation of honeycomblike networks by cusps, in agree-
ment with observed patterns.
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