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Spin Waves and Topological Terms in the Mean-Field Theory of Two-Dimensional
Ferromagnets and Antiferromagnets
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We look for possible topological terms in a mean-field Lagrangian for ferromagnets and antiferromag-
nets inspired by the Hubbard model and study their physical effects. A topological term corresponding
to Berry's phase causes the order parameter to behave like a spin moment. We find that the Hopf term
is not induced and thus there is no evidence for a neutral fermion in this theory.

PACS numbers: 75.10.Lp, 02.40.+m, 11.10.Lm

The nearly half-filled Hubbard model defined on a
two-dimensional square lattice

H t (c; cI+H.c.)+Ugcifctfctfctf
$J

has attracted a lot of attention as a possible model for
high-T, superconductors. ' Here, c; is a spin-doublet
operator,

Cgt
C'=

annihilating an electron at site i The .symbol (ij) indi-
cates that i and j are nearest neighbors. At half filling
(i.e., with one electron per site), the mean-field theory of
the Hubbard model is obtained by approximating the
on-site interaction by

U g ci fct f ct fc|f —U g ct f ci f (ct )ct f )+U g ctI ct f (c( f ci f )

Ug (C'fc'f)(c; fc'f)

Ug;g;cttr c;+Ups;,
where (c;Wc;f) = —,

' +g; and (ctfcif) —,
' —g;. This leads

us to consider the effective Lagrangian

L, -gct(i 8, )c; —t (ctc, +H.c.)+hgn; ctoc;
l /J

(2)

with 6 UI(; I and n; =1. We have taken g; to be
effectively a constant but allowed the order parameter
(c; crc;) to point in directions other than e, . In (2) we re-
gard the electrons as fast variables and the mean-field n;
as slow variables; we will integrate out the electrons to
obtain the effective dynamics of the mean-field order pa-
rameter. This procedure is based on the assumption that
the mean-field approximation is valid. After integrating
out the electrons, we will find that the energy scale for
the dynamics of n; is of order t2//6 in the large-5 (i.e.,
large U) limit, a scale much smaller than the energy
scale 6 of the electronic excitations. Thus, mean-field
theory is at least self-consistent. Naively, one may want

to describe the dynamics of n; phenomenologically by

L„=
2 gn; ii; —Jgn; n, .

1 (3)
2g ij

At first sight, L„does not appear to describe the dynam-
ics of spin variables since spin variables should satisfy an
equation of motion that is first order in time. However,
as we will see, because of its coupling to the electrons, n;
does take on the characteristics of a spin variable at low

frequencies.
For simplicity, we first consider the properties of the

model described by Eq. (2) and Eq. (3) in the limit 6» t
and at half filling. In this limit, the electron spectrum
has a large energy gap of order 6 at the Fertni surface.
In particular, for t 0, the ground state consists of one
electron per site with its spin parallel (antiparallel) to n
if 6)0 ((0). One may thus naively expect that the
electrons have little effect on low-energy physics and
may be integrated out leaving the Lagrangian L„.

However, as has been demonstrated in continuum
field-theoretic models, namely, nonlinear o models cou-
pled to Dirac fermions, various topological terms may be
induced and they survive even when the fermion mass—the analog of U here —goes to infinity. These topolog-
ical terms can alter the low-energy properties of the
model dramatically. In particular, in the (2+ 1)-
dimensional O(3) nonlinear cr model described by the
action 2 =(B„n') /2f, where a 1,2, 3 are O(3) iso-
spin indices, a Hopf term2 may be added. In general,
the addition of a Hopf term to a (2+1)-dimensional
theory can endow the relevant excitations in the theory
with fractional angular momentum and statistics. 2 3 Let
us remind the reader that in field theory the Hopf term is
constructed by adding the terms

d xg«""~A„B„Aq+ d xA„J"

to the action, where J" is the topological current

J"=«""«,b, n'B„n Bqn'

Eliminating A„, we obtain the nonlocal Hopf term

&-„d'x d'y «""'J„(x)K» —y ),/ I » —y I
'IJ.(y ).
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It turns out that the Hopf term becomes local

H, =t ctc, +H.c.—hgn; c;tac;
IJ

(4)

If the background field n;(t) varies slowly in time, we

may use the adiabatic approximation to calculate the
low-energy efl'ective Lagrangian. In this approximation,
the effects of the electrons consist of two terms. The first

comes from the ground-state energy of the instantaneous
Hamiltonian

H (r ) ) eo(r ) & -Eo(r ) ) eo(r ) &

The second term is the Berry's phase, originating in the
time dependence of the ground-state wave function

Ft'-„d'x e"'"(z t B„z)(ti,z'biz)

when rewritten in terms of z=(zl, z2), the spinor
"square root" of n(x) defined by n(x) =zt(x)crz(x),
ztz=1. The Hopf term can also be induced by cou-
pling n'(x) to an isodoublet Dirac fermion as in the La-
grangian L~ y(i8 mn—'r')y. The coefficient of the
induced Hopf term is such that a soliton in the model is

changed from a boson to a fermion.
A number of people have speculated recently that such

electrically neutral fermions may appear in the Hubbard
model. s It is thus of some interest to study the appear-
ance of topological terms in the Lagrangian L.

Before we begin, we remark that any possible connec-
tion between the lattice model and the field-theory model
studied in Refs. 2-4 is far from obvious even though L„
and L, resemble X and X~. It is well known that Dirac
fermions cannot be put on the lattice without doubling.

The dynamics of the electrons is described by the
Hamiltonian

be written as

dt b'(z tz ) = —,
' i „dt bn (n x n).

We have the equation of motion

ro'/g—'+f(k) 2 EN Sng

2lN —ro /g +f(k+Q) bn$+g

(7)
where f(k) 4J[2+cos(k, a)+cos(k~a)], a is the lat-
tice spacing, and Q =(n/a, n/a) is the vector to a corner
of the Brillouin zone. A similar equation connects bn)
and bnk+g For. small k, the dispersion relation has a
high-frequency branch co =16Jg (1+g /64J) —O(k )
and a low-frequency spin-wave branch co = (ka)
x(2Jg )/(1+g /64J). Were the Berry term absent,
then the factor (1+g /64J) would be replaced by unity.
Thus, topological effects modify the spin-wave velocity
but do not alter the spin wave qualitatively.

We can regard L,rr in (5) as a phenomenological La-
grangian and discuss in passing a ferromagnetic system
(J (0). Such an effective Lagrangian may arise from a
modified Hubbard model obtained by our adding a spin
interaction J'g(;J&c;toe;cjtacl to the Hamiltonian in (1).
Expanding around the ferromagnetic ground state n;
=e, +Bn;, we find

(b,o n—;,n;&) g n;p+2J+~n~& + —,
' (n;xn;), =0,

(6)
where the summation runs over the sites j that are
nearest neighbor of the site i. Expanding in small fluc-
tuations around the antiferromagnetic state (J)0),
n; =(—1)'e, +bn;, and going to frequency and momen-
tum space, we find

ir-&~0(r)
~ ~

~0(t)).
—ro'/g'+ h (k)

2LN

2 EN Bnk

N'/g'—+h (k) bng
=0, (s)

In the t/A=O limit, or equivalently, to leading order
in I/6, the ground state ~%'0(t)) =8; ~n;)—= 8;(z;ic;i
+z'zc'i )

~
0) where z; (z i;,z 2; ) is the spinor "square

root" of n; defined by n; z;toz;, z;tz;=l. In other

words, the ground state consists of one electron at each
site with its spin parallel to n;, that is, n; c; ~c; ~

n;)
= ~n;&. The ground-state energy to leading order Eo
= —~ (with X the number of lattice sites) is indepen-

dent of n; (t ). The Berry's phase associated with the

ground state is given by I = —i+; z;tz; Thus, in this .or-

der, the effective Lagrangian is

L,rr= gn;n; —J n;n, +i gz; i;1 (s)
2g ij i

Note that the strength of the Berry term is fixed.
To study the physical effects of this extra topological

term, consider the spin-wave spectrum. While z i can-

not be expressed simply in terms of n, its variation can

with h (k) =4J [2 —cos(k„a) —cos(k~a)) =f(k+ Q).
The spin wave has two branches described by (bnki,

bing) ~ (1, ~ i ) and with the dispersion relations
co=[1'6 g +g h(k))'~ ~ —,

'
g . For small k, one of

these branches has a low-frequency spin wave with
co=4J(ka)2. We note that here, were the Berry term
absent, that is, were the off-diagonal entry absent in Eq.
(8), the dispersion relation would be linear boa:k rather
than quadratic cocc:k . Thus, topological effects are cru-
cial in this model to produce the spectrum expected on

general grounds.
Another way of expressing this is that the Berry term

restores to the variable n its spin characteristic. At low

frequencies, in the ferromagnetic case, we can ignore the
n term in Eq. (6) and obtain the equation

n;=4J n;xg, n, . (9)
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In the antiferromagnetic case, for (9) to hold, we have to
take the g3 ~ limit. Equation (9) is precisely the
equation appropriate for a spin moment. Alternatively,
instead of L„as in (3), we could have taken for L„ the
last two terms in (5).

We can now compute perturbatively in the hopping
coefficient t: To lowest order we find an antiferromag-
netic dd;„= —(t /2A) gl;j) n;. nj to the effective La-
grangian.

Now we want to ask whether the solitons in the anti-
ferromagnetic state are fermions or have fractional spin
statistics, i.e., whether the Hopf term appears in the
effective Lagrangian of n; after the electrons are in-

tegrated out. Although the topological term i+;z;ti;
does appear in zeroth order in I/6, it is obviously not the
Hopf term. In order to see whether the Hopf term ap-
pears in higher orders in I/6 and/or when t is not small
compared to b, , we would like to study the theory for ar-
bitrary A. This can be done by our making a canonical
transformation to the electron field and expanding in the
long-wavelength limit. Introducing ljj; =U;c;, where

y 1i y2i (1)—
y2i yli

with y;=z; for ( —1)'=+1 and y;=oyez; for ( —1)'
= —

1 so that n; cr U; o3Uj( —1)', we can rewrite the
Lagrangian L, as L, =Lo+L l, where

U;

Lo=igy c), y;
—t y;y, —agy o3y;( —1)'

l LJ

and

L l t l/ j (jj ltcj +g ltcj vj le,
IJ

with gj =U;Ujt —
1 =adjt and v; =iU; iljUt. This is clear-

ly a lattice gauge theory with Ao(i) corresponding to
iv;, 3 l

(—i) to g;;+„-/a and Az(i) =&; '+9/a. In the con-
tinuum limit, A, =UB,Ut, a=0, 1,2. Lo can be di-
agonalized exactly. For long-wavelength fluctuations
around the antiferromagnetic state, Ll is small and can
be treated as a perturbation. The effective Lagrangian
of n; may be calculated in a power expansion of v; and

Similarly, for long-wave fluctuations around the fer-
romagnetic state, we may choose U; in the canonical
transformation (10) to be

FIG. 1. Diagram which contributes to the Berry term.

Z1' Z2'

U,
Z2t Z lt

In that case, L, =LjI+Ll, where Lo is obtained from Lo

by our omitting the ( —1)' in the term proportional to h.
The topological term discovered in previous calcula-

tions is first order in v; and may be regarded as originat-
ing from normal ordering of the second term in L l (Fig.
1).

In the antiferromagnetic state, the free propagator is
given by

+ok 8a3
kk' 2 . ~k —k' 2 . k —k'+Q~

co Ej—+ib co —Eg+ib

where j.k =2t [cos(k„a)+cos(k~a)] and Ek =(ej,
+4 ) 'j'. The Feynman diagram in Fig. 1 gives

g trv;cT3( —1)'
2Ek

Z Zy'y ( —»'
k Ek

which reduces to our previous result when 5 ~ (or
t 0) with a coefficient 6/ ~

6
~
.

Similarly the free propagator in the ferromagnetic
state is given by

G (k) =(co —
ek

—Wcr3+ jbk)

where bk 0+ if ek+ha3) 0 and bk 0 if ck+ho3(0. The graph in Fig. I gives

N( Nl ~—
i

where Nt (N~) is the total number of spin-up (down)
electrons in the ground state. When b, ) 4t, Nj =N and
N l 0, we obtain our old result again.

To identify the Hopf term on the lattice, we recall that
in the continuum limit, the Hopf term is given by

Hl =„ trA =„d xe"""trA„A„Aq,

where we have used the notation of differential form
and defined the matrix one-form A =A„dx"=UdU,
jj =0, 1,2. Since dA = —A z, this term is also proportion-
al to the other three terms:

Hz = d x e"" trA„8+q,

0 = d xt. "'trA o A(xA

H4=„d x j."' trA„cr 8„A o .

Thus, we are to identify in the effective action 8' the
terms &=gz-l a~[H~] and to determine the coefficients
aj, where [Hz] represents the lattice version of Hz. Thus

[Hl] =g; trv;[g, , ~„-,(, , +v],

for example.
In our model the Hopf term may arise from the three

diagrams in Fig. 2. Figure 2(a) contributes to al and a3.
Figures 2(b) and 2(c) contribute to aq and a4.
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(b)

P

v =

(c)

FIG. 2. Diagrams which potentially contribute to the Hopf term.

After a straightforward calculation, we find that all
coefficient a~ in W are zero in both the antiferromagnet-
ic and ferromagnetic state. For example, calculating the
first term in W from Fig. 2(a), we find that

(~+ek) tk (x+y)aai~ el 'XQQ
2tt k (to' Ej)'-

in the antiferromagnetic state. The above expression is

zero since the integrand is odd under tti
—ai and

k k +Q. Therefore the Hopf term does not appear in

the antiferromagnetic and ferromagnetic state. The soli-
ton in the antiferromagnetic state is a neutral boson, at
least for the model considered in this paper.

The calculation of the induced Hopf term in field

theory amounts to our evaluating the fermion deter-
minant in 2„, namely, det(ik mn'r—')/det(i8 M)—
The regulator (with mass M) is needed to cancel the
high-lying eigenvalues of iiII (even though the relevant
Feynman diagrams are apparently convergent). One
way of calculating the determinant involves diagonaliz-
ing n'I' Uz3U ' so that we have det(i& tttz3—)/
det(i8' M), whe—re D„8„+V„and V„—:U '|1„U is a
non-Abelian (pure) gauge potential. It can be verified
that the numerator gives (in the notation of differential
forms with V V„dx") terms like trt3V', which vanishes
identically, while the denominator is proportional to
(M/ i M i )tr V3, the unique three-form on the sphere 5 '
describing the Hopf invariant. In other words, the in-
duced Hopf term comes from the regulator needed to
define the theory. We have indicated that the coefficien
of the Hopf term depends only on the sign of M and thus
the induced effect remains even as M

One may notice that 2„ is invariant under T and P
provided that n' n' under T—and P. Thus one may
naively expect that the P and T odd Hopf term should
not appear in the low-energy effective action. But in

field theory, a regulator is needed to define the theory.
With the choice of the Pauli-Villars regulator [det(ik'
—M)] ', the regulated theory is not invariant under P
and T. Thus, the appearance of the Hopf term is con-
sistent with the symmetries of the (regulated) theory.

With this understanding, we see why we would not ex-
pect the appearance of a Hopf term in a lattice theory.
The lattice provides a short-distance regularization
which clearly violates neither P nor T. Our model La-
grangian and the ground states (ferromagnetic and anti-

ferromagnetic states) obviously also do not violate P.
In conclusion, we have found in the t/Is. «1 limit a to-

pological Berry term in both the antiferromagnetic and
ferromagnetic case. It will be interesting to determine
what this term becomes as t/It increases. In the long-
wavelength limit but without restriction on 6 and t, we
are able to determine the absence of the Hopf term.
Within the limitations of this analysis, the soliton in the
theory would appear to be bosonic.
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