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Synimetry and Analyticity of Energy Bands in Solids
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We show that pairs of simple energy bands exist that have identical symmetries for their Bloch func-

tions, but different symmetries for the corresponding Wannier functions. For finite crystals such pairs of
bands belong to equivalent band representations. In the case of infinite crystals, we use the analyticity of
simple bands to prove the inequivalence of their band representations. This means that the energies of
such pairs of bands cannot coincide despite the identical symmetries of their Bloch functions.

PACS numbers: 71.10.+x, 71.50.+t

It is customary for one to apply Born-von Karman or
cyclic boundary conditions in solid-state theory both in

solving dynamical problems' and in symmetry applica-
tions of group theory. 2 This is a very useful approach,
and experience gained over many years shows that, for
solutions of Schrodinger s equation in a periodic poten-

tial, the replacement of the infinite crystal by a finite one
does not change the physics. A similar situation prevails

concerning the irreducible representations of space
groups which are used for specification of the symmetry
of Bloch functions. The reason for this is that these rep-
resentations are finite dimensional (independent of the
size of the crystal) and because the Bloch functions of a
finite crystal coincide with those of an infinite one at spe-
cial discrete values of the k vector. There are, however,

other types of representations of space groups which are
used for connecting the symmetries of Bloch and Wan-
nier functions. These are the so-called band representa-
tions' which specify symmetries of whole energy bands
via the symmetries of their Wannier functions. For
them, finite and infinite crystals are very different be-

cause for the latter convergence and continuity proper-
ties of the basis functions have to be taken into account.

In this Letter we investigate the symmetry correspon-
dence between Bloch and Wannier functions by using the
concept of band representations. We show that there are
pairs of simple energy bands with identical symmetries
for their Bloch functions, but whose Wannier functions
have different symmetries. By invoking Nenciu's theo-
rem about analyticity and periodicity of Bloch functions
for simple bands, we prove that these energy bands are
equivalent for a finite crystal (their Bloch functions
differ by a phase factor), but are inequivalent for an
infinite crystal (no continuous phase transformation can

connect their Bloch functions).
For one-dimensional crystals there is a one-to-one

correspondence between the symmetries of Bloch and
Wannier functions. Despite the interest in the subject
for many years, ' it seems that the only case where a
one-to-one symmetry correspondence was rigorously es-
tablished between Bloch and Wannier functions in three
dimensions is the case of simple bands in crystals with
inversion symmetry. By using band representation
theory, we have recently shown that for the overwhelm-

ing majority of simple bands there is a rule that different
symmetries of Wannier functions determine different
symmetries of Bloch functions. " The exceptions to this
rule appear only in the space groups F222 (No. 22) and
F23 (No. 196).

In proving the existence of the exceptional pairs of
simple bands, we use the notion of band representa-
tions which are labeled by two indices (q,p), where q
is the Wyckoff position' and p is the index of an irre-
ducible representation of the isotropy group G~ of q.
(q,p) is an induced representation of the space group G
from the representation p of Gq. Band representations
have recently attracted attention in various applications.

Consider the band representations (a, I) and (b, 1) of
space group No. 22 (F222). a and b denote the Wyckoff
positions, a (0,0,0) and b =( 00, /2c), and the index 1

denotes the trivial representation of the corresponding
isotropy groups G, and Gb. We shall first discuss the
finite-crystal case when the Born-von Karman boundary
conditions are applied. What we know is that for the
finite crystal the characters of the band representations
(a, 1) and (b, 1) are the same. "

In the particular case of the band representation

(a, l), the basis is given by the set [the set is similar
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y(r+ Na; ) y(r), (2)

where the a;(i-1,2, 3) are unit-cell vectors and N is an
integer, the set in Eq. (1) contains N3 functions. Lety" (r —R„) and y 'i(r —R„) [see relation (1)] form
bases for the band representations (a, 1) and (b, 1). This
means that y ~"i (r) and y ~ ' i (r) are the bases for the
trivial representations of the isotropy groups G, and Gb.
The latter are' (C2 is a rotation by z, the superscript
gives the rotation axis)

for (b, 1)]

y" '(r —R„),

where R„runs over all the Bravais lattice vectors in the
Born-von Karman crystal [in an infinite crystal, Eq. (1)
contains an infinite number of functions]. Thus, for the
condition

where T(k) is a sum of exponentials with the coefficients
A(R„) from relation (6),

T(k) gA (R„)exp( —i k R„).1

Il
(8)

-exp( —ik, c)T(k„, —ky, —k, ), (9)

The function T(k) in Eq. (7) is, by definition, periodic in
k with the periods of the Brillouin zone. ' (These
periods are the reciprocal-lattice vectors K|, K2, and K3
which are given in Ref. 12, p. 54, in their Cartesian coor-
dinates. ) Let us now use the fact that y" (r) is an
eigenfunction with eigenvalue 1 of all the elements of G,
and similarly for y~ 'i(r) [relation (5)]. Thus, by ap-
plying the elements of Gb to both sides of relation (6)
and by using relations (5) and (7), we find

(C2 i 00c):T(k„,k~, k, )

G, :g,=E, C2, C$, C2,

Gb gb =E (C2 I ooc), (C~ 100c), C2

(3)

(4)

(C2 i 00c):T(k„,ky, k, )

exp( —ik, c ) T( —k„,k», —k, ), (io)

' (r) Q„A(R„)y" (r —R„). (6)

In the language of the corresponding Bloch functions,
relation (6) assumes the form

yk'"(r) -T(k) yb'"(r), (7)

where g, and gb denote a general element of the group
and where, in relation (4), 00c is a translation by the
vector (0,0,c). By definition of the band representation
(a, 1) and (b, 1), we have

g y~+ ii(r) y~~ i~(r) g gab ii(r) y~b ii(r) (5)

for all g, and gb in relations (3) and (4). As was proven
in Ref. 11, the band representations (a, I) and (b, 1) for
a finite crystal are equivalent and there is therefore a un-

itary matrix A (R„) [we assume orthonormality of the
basis in relation (1) and similarly for (b, l)] connecting
their bases,

T(k) T( —k) 1. (i2)

For explicit calculations of the relations between differ-
ent components of T(k) that follow from relations
(9)-(12), it is more convenient to use the components
along the unit vectors Ki, K2, and K3 of the reciprocal
lattice rather than the Cartesian components as in Eqs.
(9)-(11). The components of k along the Kl, K2, and
K3 vectors, m 1, m2, and rn3, are independent and each of
them can assume an arbitrary value. We shall denote by
T(ml, m2, m3) the T matrix in ml, m2, m3. Equations
(9)-(11)will become, correspondingly,

C2'T(k» ky k») T( k» kr k )

To these restrictions on T(k) we have to add the unitari-
ty of T(k), and the assumption that the orbitals
y~"1(r) and yt '~(r) are real. The latter can always
be done for real representations of G, and Gb. ' We
then have

T(ml, m2, m3) =exp[ —i(2x/N)( —m i+ m2+m3)] T(m2 m3, m i
—m—3,

—rn3),

T(m l, m2, m3) =exp[ i (2rr/N)( —m i—+m2+m3)] T(rn3 —m2, —m2, m 1 m2), — (i4)

T(m l, m2, m3) =T(mi, m3 —m l, m2 —
m 1). (15)

We subdivide the additional conditions on T(k) [fol-
lowing frpm Eq ( 1 2)] into twp kinds [Eqs (1 6) and (12)] leads to additional relations between different

(i7)]: T(ml, m2, m3)

T( —ml, —m2, —rn3)&T(mi, mq, m3),

T( —ml, —m2, —m3) T(ml, rn2, m3).

(i6)

When Eq. (16) holds, the orthogonality condition [Eq.

1T( mi, —m2, —m3) =-
T(rn|, m2, m3)

(18)

On the other hand, when Eq. (17) is satisfied, we find
conditions on the values of T(mi, m2, m3). Thus, from
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Eqs. (13)-(15)and (17) we have, correspondingly,

T (mi, m2, mi+m2) =exp[ —i(2m/N)2m2],

T (m i, m ~+m3, m3) =exp[ —i(2x/N)2m3],

T (m~, m2, m& m2) =1,2

T (mi, m2, mi) =1, mi, rn2, m3=0, N/2.

(19)

(20)

(21)

(22)

These equations determine the T matrix (at the corre-
sponding values of k) up to a sign. The question arises
as to whether all the Eqs. (19)-(22) lead to the same
values of T(mi, mq m3). In order to answer this question
one has to find which values of k appear in more than
one line of these equations. For this let us consider in

more detail Eqs. (19) and (20). By equating the com-
ponents in T, we find that for the k vectors in these equa-
tions to be equal, the following relation has to hold

TABLE I. Values of the unitary intertwining matrix
T(m~, m2, m3) for N-4.
T(000) T(101) T(202) T(303) T(110)=T(220)

T(330) T(022) T(123) T(321)=T(132)=T(312)-T(013)-T(211)-T(233)-T(031)-T(020) -T(002)
T(010) T(001) T(030) T(003) T(021) =T(012)

-T(023) -T(032) -T(313)-T(102) -T(131)=T(302)-T(221)-T(230) -T(223) -T(210) =1;
T(222) T(200) —1;
T(011) T(112)-T(213) T(121)-T(310)-T(301)

T(100) T(333) T(122) T(311) T(201)-T(232)-T(113) T(320) i;
T(033) T(231)-T(332) T(130)-T(323)-T(103)-T(300) T(111)-T(133)-T(322) -T(212) =T(203)-T(120)-T(331)- i—

m2 m3+m~, m~ =ON/2. (23) (19)-(22) arbitrarily. From Eqs. (9) and (12), one finds

T(m i, m2, m i+ m2) -exp[ i(2z/N)—m2] (24)

Having fixed the sign in Eq. (19), we shall consider sepa-
rately the plus and minus signs for the solution of T from
Eq. (20). Choose first the plus sign. We have

We can choose arbitrarily the plus sign as a solution for
T from Eq. (19) [as was already mentioned above, Eq.
(19) determines T up to a sign],

T( —k„,k~, k, )T(k„,k~, k, ) exp( —ik, c) (29)

On the other hand, from Eqs. (10) and (12) it follows

T(k„,—k~, k, )T(k„,k~, k, ) exp( —ik, c) (3. 0)
These equations hold for any value of the k vector. For
some particular values of k we find

T'( ,0', k) -T'(2rr/a, ky, k, )

T(m mii+m3, m3) exp[ i (2z/N)m— 3].

For mi 0, Eqs. (24) and (25) become

T(O, m3, m3) exp[ —i(2x/N)m3]

(25)

(26)

-exp( ik, c)—,

T (k„,O, ky) T (k„,2x/b, k, )

-exp( —ik, c).

(31)

(32)

[both Eqs. (24) and (25) give the same result). Howev-

er, for mi N/2 in Eq. (23), we find different results for
the T matrix depending on whether we use Eq. (24) or
Eq. (25). Thus, for (24), it follows

T (N/2, rn 3+N/2, m 3) —exp [—i (2z/N )m 3], (27)

while from (25) we find

T(N/2, m3+N/2, m3) exp[ —i (2x/N)m3]. (28)

Equations (27) and (28) have opposite signs. For a
finite crystal, the k vector is discrete (mi, m2, m3 are
discrete) and consequently the incompatibility in sign of
Eqs. (27) and (28) does not lead to a contradiction. The
reason for this is that there is no continuous path con-
necting Eqs. (27) and (28) when k is discrete [see, how-

ever, Eqs. (31)-(35) for continuous k]. Thus, in Table I
we present one such possible choice of T(m~, rn2, m3),
which is a unitary matrix. It satisfies Eqs. (12)-(15)
and therefore intertwines the orthogonal bases of the
band representations (a, 1) and (b, 1).

For an infinite crystal the situation is very different
and, as will be sho~n below, because of continuity of
T(k) it is no longer possible to choose the signs in Eqs.

T(k„,O, k, ) -exp( ——,
' ik, c) (34)

We cannot use the minus sign in Eq. (34), because we
want T(0,0,k, ) to have the same sign for both Eqs. (33)
and (34). By use of the period (2rr/a, 2rr/b, 2rr/c) of
T(k), Eq. (33) can also be rewritten

T(2rr/a, kr+2rr/b, k, +2rr/c) =exp( ik, c/2) (—35).
From here T(2x/a, 0,0) —1, while from Eq. (34),
T(2x/a, 0,0) 1. This shows that there is no continuous
and periodic function T(k) satisfying Eqs. (9)-(12).
By using this continuity of T as a function of k, we have

They are the analog equations to Eqs. (19) and (20) for
the finite crystal. In writing Eqs. (31) and (32), we used
the periodicity of T(k) with the periods (4z/a, 0,0) and
(0,4rr/b, 0) of k. The T matrix itself is determined from
Eqs. (31) and (32) up to a sign. Let us choose arbitrari-
ly the sign of one of the functions, say,

(T,0', k) -exp( —,' ik,c)—
This corresponds to Eq. (24) for the finite crystal. How-
ever, now, for an infinite crystal, we can use the continui-
ty of T(k) and we then have from Eq. (32),
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shown that no unitary intertwining matrix T(k) exists
for the bases of the band representations (a, l) and
(b, 1).

We have therefore arrived at a very unusual result for
band representations which depends on whether the crys-
tal is finite or infinite. For a finite crystal, the band rep-
resentations (a, 1) and (b, l) are equivalent' and in
Table I we list the values of the phase factor T(k) [rela-
tion (7)], which connects their Bloch functions for N =4
[by using relation (8), one can also calculate the
coefficients A(R„) connecting the Wannier functions in

relation (6)]. It should be pointed out that despite their
linear dependence [relation (6)], the Wannier functionsy" (r) and iir( ' (r) have different symmetries, be-
cause it is impossible to require either yr" (r) or

')(r) to satisfy both equations in relation (5). Such
a requirement, together with relation (6), leads to a con-
tradiction. We have here a situation when Wannier
functions y(")(r) and y(b')(r) with different sym-
metries [relation (5)] lead to Bloch functions with identi-
cal symmetries.

On the other hand, for infinite crystals the situation
changes. Relation (5), which determines the symmetry
of Wannier functions, holds as it is; however, relations
(6)-(8) depend on whether or not the band representa-
tions (a, 1) and (b, 1) are equivalent. As was proven in
Ref. 8, Wannier functions of simple bands can be chosen
with exponential decay. Let us then assume that the
simple bands (a, 1) and (b, 1) have exponentially decay-
ing Wannier functions and, correspondingly, their Bloch
functions yk( ')(r) and ilrk(" (r) are analytic and period-
ic in k. From our proof that T(k) for an infinite crystal
cannot be a continuous function, it follows that relation
(7) cannot hold [the Bloch functions on both sides
should be analytic, while T(k) is not continuous]. Also,
from the discontinuity of T(k), it follows that the
coefficients A(R„) in relation (8) do not fall off fast
enough. They can therefore not appear in relation (6)
where on both sides we have exponentially falling off
Wannier functions y(")(r) and y( ')(r). From rela-
tions (6)-(8), one concludes that in an infinite crystal
the band representations (a, 1) and (b, 1) are in-
equivalent.

In summary, we have shown that the bands corre-
sponding to (a, 1) and (b, 1) have Wannier functions
with different symmetries, but their Bloch functions have
identical continuity chords or symmetries (the precise
meaning of continuity chords is given in the second paper
of Ref. 3). This is correct for finite and infinite crystals.
In the former case, however, the band representations

(a, 1) and (b, 1) are equivalent, while they are in-

equivalent in the latter case. Similar results hold for the
other nine pairs of simple bands: seven in F222 (for all
the one-dimensional representations of a, b and c,d
Wyckoff positions) and two in F23 (for the trivial repre-
sentations of a, b and c,d Wyckoff positions'2). We have

found, therefore, ten pairs of simple energy bands with
identical symmetries for their Bloch functions and
different symmetries for their Wannier functions. These
bands are represented by band representations which are
equivalent in finite crystals, but are inequivalent when

the crystal is infinite. The physics of these results is very
unusual. We have here for the first time an example
where only for infinite crystals is it possible to conclude
that simple energy bands with identical symmetries for
the Bloch functions cannot appear with identical ener-
gies.
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