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Lyapunov Spectrum of a Model of Two-Dimensional Turbulence
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A scalar model of two-dimensional Navier-Stokes turbulence first proposed by Gledzer is shown to
realize the power law E(k)-k in its chaotic state, which is found to obey the same scaling law as

that of the enstrophy-cascade theory. All the Lyapunov exponents are calculated for several values of
viscosity, and they are found to have a scaling property in the interior of the attractor. The calculated
distribution function of the Lyapunov exponents appear to have a singularity at null Lyapunov exponent.

PACS numbers: 05.45.+b, 47.25.Cg

Properties of fully developed turbulence still lack an

appropriate interpretation in the strange-attractor theory
in spite of recent advances in the theory of dynamical
systems. In particular, the scaling property in the inertial
range has not yet been understood as any characteristic
of such a strange attractor, mostly because numerical
techniques developed so far are not sufficiently powerful
for high-dimensional attractors of partial differential
equations because of insufFicient ability of present com-
puters. At the present stage, therefore, one of the possi-
ble strategies is to investigate in detail a chaotic dynami-
cal system which has a scaling property similar to that in

real fluid turbulence but is tractable in size. In this
direction Grappin and co-workers' investigated a model
equation of MHD turbulence, in which both the
Kaplan-Yorke dimension of the attractor and the time-
averaged kinetic and magnetic spectra are compatible
with Kolmogorov's scaling law for fluid turbulence.

In this Letter we focus our attention on what type of
strange attractor can be connected with the scaling law
of turbulence. We investigate a model equation of two-
dimensional (2D) turbulence of ordinary fluid which was
first proposed by Gledzer. ' The model is constructed in

wave-number space, which is discretized as K„=ktlq"
(q & 1, 1 ~ n ~ N). The velocity is expressed by a set of
real collective variables fu„l, where u„stands for the ve-

locity components whose wave numbers k lie between k„
and kn~l, kn (

~
k

~
(k„+1. The energy E and the en-

strophy Q are therefore defined as E =P„u„/2 and Q
=P„k„zu„z/2, and the energy spectrum E(k„) is E(k„)
=u„/2k„. Each evolution equation for u„ is assumed to
be quadratically nonlinear and connected with the two
preceding and the two succeeding equations. Moreover,
the conservation of phase volume +„Bu„/Bu„=0 is also
assumed to hold in the inviscid unforced case, where the
dot denotes the time derivative. These conditions yield
the following evolution equation of fu„:I ~ n ~ Nl:

(d/dt + Vkn + v kn en ) ttn Cn tnt+ ] nit+2 +ncttn —
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where c„',c„,c„are determined so that both the en-

ergy and the enstrophy are conserved, f t'l and f l are
time-independent forcing terms, v is the kinetic viscosity,
v is the dissipation coe%cient with O„being unity for
n =1-9 and zero otherwise, 8 is Kronecker's 8, and t is
the time. The last term on the left-hand side of (1) is in-

troduced to prevent the energy from increasing indef-
initely by inverse cascade.

We investigate the unsteady solutions of (1) numeri-

cally. Time marching is performed by the fourth-order
Runge-Kutta method. In the following, we show the nu-

merical results for ktl =c11=2 'o, q =2, f t'l =f t l

=0.002, v' =9x 10, and (v, N ) =(10,22), (10
24), (10,26), (10,27), (10 ', 29), (10 ' 32),
(10 ', 36), and (10 ', 37). The numerical calculation

was carried out in double-precision arithmetic on the
vectorial computer VP-200 at Kyoto University.

We started the numerical integration with an arbi-
trarily chosen initial condition. After the initial transient
period, an unsteady but apparently stationary state is
realized, with the energy and enstrophy fluctuating re-
spectively between 1 and 3 and between 0.5 and 2.5.
The quantities we discuss below are evaluated in this ap-
parently stationary state.

A scaling property for 2D turbulence was proposed by
Batchelor and Kraichnan and Leith (BKL scaling) s; the
enstrophy dissipation wave number kd and the energy
spectrum E(k) in the inertial range are expressed as

lt E(k) = lt~v3'2E, (k/kd)
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FIG. I. Normalized energy spectrum function E,(k/kz) for v 10 6 (squares), 10 (circles), 10 s (triangles), 10 9 (plusses),
10 to (crosses), 10 '2 (lozenges), 10 '4 (asterisks), and 10 '5 (double triangles). The straight line shows slope —3.

where ri, v, and k denote the enstrophy dissipation rate,
the kinematic viscosity, and the wave number, respec-
tively, and E, is a nondimensional function. According
to the BKL scaling law the energy spectrum takes a
power form E(k)-ri / k in the inertial subrange.
We obtain the energy spectrum E(k) by averaging the
instantaneous energy spectrum over the time interval
0~i ~12000. The mean enstrophy dissipation rate ri is
then evaluated from this spectrum as rl 2'„k„E(k„).
We see in Fig. I that the energy spectra normalized fol-
lowing the BKL scaling law for several values of viscosi-
ty agree fairly well and that the enstrophy inertial
subrange with k spectrum is remarkably realized,
which sho~s that the BKL scaling law for 20 Navier-
Stokes turbulence is also embodied in the model (I).

We calculated all the Lyapunov exponents XJ and the
Lyapunov vectors U„(J (I ~ n,j ~ N) in the stationary
state making use of the linearized version of (1) and the
Gram-Schmidt orthogonalization method, where we took
(P, v, j )'/ as the norm of vP and the Lyapunov ex-
ponents are ordered as XJ. ~A,J+~. The numerical in-
tegration was performed until a plausible convergence
was obtained, and it was checked that QJ A,~

= —v+J kj—v'gj~-I k~
' holds with an error less than 0.01%. The

values of the Lyapunov exponents thus obtained vary
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FIG. 2. Kaplan-Yorke dimension D vs the enstrophy dissi-
pation wave number kq.

with the viscosity, but in every case we calculated, some
of the Lyapunov exponents are positive, which indicates
that the velocity u„moves chaotically on a strange at-
tractor. The spectrum of the 6rst Lyapunov vector ex-
hibits a k spectrum (s-2) in the inertial subrange in
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FIG. 3. (a) Normalized Lyapunov exponents. (b) Lyapunov
exponents A,, for large j vs the viscous dissipation rates at the
wave number kj.

agreement with the result of a full simulation of the 2D
Navier-Stokes equation.

The Kaplan- Yorke dimension D of the attractor is
D p+gf-P~/I)I~+I I, p maxjm IQJ-tA~ ~0]. We
see in Fig. 2 that the dissipation wave number is propor-
tional to 2 which means that the BKL scaling law of
the enstrophy dissipation wave number in real 2D tur-
bulence also holds in the model (1) since k„=2"
Another quantity characterizing a chaotic attractor is

the Kolmogorov entropy H pz t Xz Olq & 0, Xq+t SO).
The Kolmogorov entropy and the largest Lyapunov ex-
ponent appear to behave as log(1/v).

We plot in Fig. 3(a) P;- t A,; normalized by the Kol-
mogorov entropy H, taking j/D as ordinate. It is seen

that the graphs for several values of the viscosity agree
well for the ordinates j /D less than 1, while they scatter
for j/D larger than 1. This means that the Lyapunov
exponents due to the interior of the attractor (j /D & 1)

have a definite scaling law. On the other hand, the
Lyapunov exponents for j/D »1 do not have the above
scaling property but are strongly related to the viscous
damping rate vkj2 as shown in Fig. 3(b), where I X~ I

is
plotted as a function of vkj. The coincidence of the
Lyapunov exponent with the linear damping rate has
been attributed as a characteristic of the exterior of the
attractor in the case of a time-delayed differential equa-
tion describing an optical phenomenon in laser systems. s

It is interesting that the scaling law of the Lyapunov
exponents with respect to H and D occurs in the wave-

number range lower than kd, different from the BKL
scaling law. The scaling law of the Lyapunov exponents
in the interior of the attractor leads us to that of the dis-
tribution function of the Lyapunov exponents. In Fig. 4
we can see a nondimensional function f such that
j/D f(DA~/H), where j is the index of the Lyapunov
exponent and is also the number of Lyapunov exponents
between XJ and )I, I, Cards. ; I)IJ SA.; ~A. IJ. The distribu-
tion function which is proportional to —df(k)/ dX ap-
pears to diverge at null Lyapunov exponent. A similar
divergence has been addressed by Ruelle for 3D Navier-
Stokes turbulence, while care should be taken of the
possibility that there might be several mechanisms which
lead to such a divergence. The divergence of the distri-
bution function was also found by Ikeda and Matsumoto
in the time-delayed differential equation, while in the
case of the Kuramoto-Sivashinsky equation such diver-

gence was not observed. ' Further analysis on this
singularity is now under way and will be reported else-
where together with a detailed study of this model and
its 3D counterpart.
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