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Level Statistics of a Quantized Cantori System
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We study the significance of a pronounced Cantori structure in classical phase space for the level

statistics of the associated quantum system. As an example we choose the anisotropic Kepler problem.
For high excitations, we find that the level statistics tend to the predictions of random matrix theory, but
the convergence is rather slow.

PACS numbers: 05.45.+b, 03.65.Ge

The many theoretical works on nonlinear theories
show that bounded classical (Hamiltonian) systems often
exhibit deterministic chaos. ' It is natural to ask how this
behavior emerges from the quantized version of the clas-
sical system. The answer is not straightforward, because
the necessary condition for chaos is absent in quantum
mechanics: The Schrodinger equation is linear. Furth-
ermore, the finiteness of lt, prevents the applicability of
the tools which were so successful in describing classical
dynamics.

Systems studied so far belong to three categories: in-

tegrable, fully chaotic, and generic systems. Generic sys-
tems have mixed phase-space structure and often display
a smooth transition between regularity and irregularity
as a parameter is varied. 2 Two procedures have been
proposed to identify the influence of classical chaotic
motion in quantum spectra: an analysis of level fluctua-
tion properties and the study of long-range correlations
of energy levels. Most of the work to date has been de-
voted to the former case and was strongly influenced by
the results of random-matrix theory (RMT). Howev-
er, in spite of the success of RMT in predicting fine-scale
structures of quantal level fluctuations, the physical
mechanisms underlying this behavior are not well under-
stood. The main difticulty is to extract the precise neces-
sary conditions for application of RMT and no rigorous
proofs concerning this issue exist. In such a situation
numerical "experiments" often enable one to approach
the problem from a better starting point, e.g. , the ques-
tion of the level statistics of generic systems (for a recent

discussion see Robnik ) or "false" level statistics of hy-

perbolic billiards.
In this Letter we present results and conclusions con-

cerning a new class of systems which has not been con-
sidered before. This class consists of systems displaying
an abrupt transition between integrability and ergodicity.
Generally the Kol'mogorov-Arnol'd-Moser theorem pre-
vents such an abrupt transition in that most of the in-

variant surfaces in phase space (the tori with irrational
winding numbers) survive under small perturbations.
However, the Kol'mogorov-Arnol'd-Moser theorem does
not apply to the pure Coulomb system, where all the
bound orbits are periodic and lie on resonant tori.
Hence, all kinds of behavior may occur by addition of a
small perturbation to a pure Coulomb potential; the sys-
tem may remain regular (e.g. , Stark effect), it may
display a smooth transition to chaos (e.g. , atomic di-
amagnetism9), or it may become ergodic at once, in-

dependent of how small the perturbation is. There is

strong evidence that the anharmonic Kepler Hamiltoni-
an' (atomic units used)

(1)

belongs to this latter class. ' Note that the Hamiltonian
(I) has a real physical background; it describes very ac-
curately donor impurity levels in a semiconductor, "
1 —

y being the mass anisotropy. We will show that for
small departures from the integrable case y =1 the phase
space of this system is densely filled with remnants of
tori (Cantori), which makes the system only very weakly
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FIG. 1. Typical Poincare surface of section for the aniso-
tropic Kepler problem generated by a single trajectory (y
=0.8, rn 0).
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chaotic (small Kolmogorov entropy). The level statistics
of the quantized system show a pronounced h depen-
dence.

Since the z component of angular momentum is con-
served the problem can be reduced to a two-dimensional
but nonintegrable one. A convenient method to visualize
the phase-space structure is to study Poincare surfaces of
section. ' For this we solved the classical equations of
motion. As coordinate set we used semiparabolic coordi-
nates p=(r+z)'~, v (r —z)'~, which regularize the
Coulomb singularity at the origin (for y=l). Numeri-
cal calculations were performed by use of a fifth-order
Runge-Kutta method with variable step size. Because of
classical scaling properties the phase-space structure is
independent of energy and it is sufficient to calculate sur-
faces of section for one single negative value of the ener-
gy"

A typical surface of section plot obtained by integra-
tion of a single trajectory is shown in Fig. I (for y 0.8).
It is easy to make out remnants of tori, which are present
everywhere in phase space. Once the orbit is trapped on
such a torus, the trajectory remains on it (or at least in

its neighborhood) until it passes through chaotic regions
and reappears on a different approximate torus, on which
it remains for some further time. As a result of this
diffusion process the motion becomes ergodic, although
(different) constants of motion exist for finite time inter-
vals. Remnants of tori as shown in Fig. 1 are called
vague tori' or Cantori, ' ' because the invariant part of
such a remnant with irrational winding number may
form a Cantor set. '

To study energy-level statistics for highly excited
states of the anisotropic Kepler problem we developed an
efficient quantization scheme. The method is based on
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expansion of the radial part of the Schrodinger equation
in a complete set of Sturmian functions and the angular
part in spherical harmonics with fixed azimuthal quan-
tum number m and parity z (the only good quantum
numbers). The Hatniltonian matrix can be ordered to
have band structure. Using scaling properties, we have
achieved convergence of most of the eigenvalues for
small mass anisotropies 1 —y. This allows us to calcu-
late eigenvalue sequences which are an order of magni-
tude larger than in previous quantum calculations on
nonintegrable systems. Details of the method can be
found in Wintgen, Marxer, and Briggs. '

Calculations were done on a Cray 2 computer for
y=0.8, m =0, and even parity. Matrices with dimension
up to =8000 were diagonalized giving a converged

FlG. 2. Nearest-neighbor spacing distribution (a) for

y 0.8; 5ppp spacings (ranging from level 500 to 5500) are in-
cluded. (b) Spectral rigidity A3, averaged over the level stretch
ranging from level 2501 to 5500. Also shown are the expecta««

tions for uncorrelated spectra (Poisson case) and random-
matrix spectra (GOE case).
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stretch lE;l of 5500 levels. We applied various statistical
s to the data ': nearest-neighbor spacing distri-

number statistic n(L) (variance Z2, skew yi, excess y2 .

8; = fN(E;) j. N(E) is the cumulative mean leve en-

sity and is given yd
' '

by a Thomas-Fermi formula:

Z2

08-

N(E) = r/E+—W/JE+ a. (2) 04-

I = l/4Jy characterizes the volum pe of hase space; the
A and 8 were fitted numerically to the data.quantities an

We analyzed the stretch t8;I in steps o
ginning at evel I 500) to test stationarity of the fiuctua-
tion properties along the spectrum.
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'

This is not surprising since h, 3 measures spec ra c
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which predicts asymptotic saturation o e sp
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FIG. 3. Higher moments of the numbmber statistics n (L ) ob-
r the level stretch ranging from leveltained by averaging over the eve s re

d()2501 to 5500 (y=0.8): (a) variance X (b) skew y&, an c
ether with the expectations for uncorrelated spec-excess 6'2, toget er wi

-matrix s ectra (GOE case).tra (Poisson case) and random-matrix spectra
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show significant deviations from RMT predictions even

in an excitation regime extending as high as the 5500th
level. From the numerical evidence we conjecture that
both, intermediate-scale deviations and slow convergence
to RMT predictions, are connected to the pronounced
Cantori structure of the classical phase space.

A (yet nonexisting) theory which would account for
the "convergence speed" or 6 dependence of the statisti-
cal measures would presumably incorporate the Hamil-
tonian Aow or transport through the gaps of the rem-

nants. Up to now such theoretical classical investiga-

tions have been restricted to the case of isolated Can-
tori. ' ' The anisotropic Kepler problem off'ers the op-

portunity to test these theories when the remnants of tori
lie dense in phase space.

We are grateful to J. S. Briggs, M. Robnik, and

B. Eckhardt for fruitful discussions.
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