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Spin-Singlet Wave Function for the Half-Integral Quantum Hall El'ect
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We present an analytic wave function describing a spin-singlet incompressible fluid of electrons
confined to a single Landau level, which exhibits a half integ-ral quantum Hall effect. Our numerical
studies suggest that this state may be responsible for the recently observed eA'ect with v =

2 .

PACS numbers: 73.40.Kp, 73.20.0x, 73.50.Jt

The observation by Willett et al. ' of a quantum Hall
effect (QHE) with even-denominator fractional quanti-
zation v= —', has seemed to cast doubt on the current
theoretical picture which has so far predicted only
odd-denominator fractional quantizations of the QHE in

two-dimensional electron systems occurring in a single-
well heterostructure device. In this Letter, we report
our discovery of a new incompressible quantum liquid
state of electrons in a nonpolarized spin-singlet state
which has a half integral -QHE quantization, and we

present its explicit wave function. Two new conditions
present in the experiments of Ref. 1 favor our state: (i)
reduced Zeeman energy for spin reversal, and (ii) lower
correlation energy of electrons in the same cyclotron or-
bit, due to the node in the second Landau-level orbital
wave function.

We consider a two-dimensional (2D) electron gas in a
uniform magnetic flux density 8. The effective mass and
interparticle interaction V(r) are isotropic in the 2D
plane, and substrate disorder is absent. When the
ground state is incompressible, a small amount of sub-
strate disorder leads to a QHE plateau with o "~

=[Ba/88]„ve/@o, where ct is the electronic charge
density and 4o =h/e is the London flux quantum. In the
absence of a substrate potential, v reduces to the
Landau-level "filling fraction"

~
cr @o/e8 ~.

In the "extreme quantum limit, " where the cyclotron
energy hco, dominates the Zeeman and interaction ener-
gies, filled Landau levels are inert, closed-shell struc-
tures, and a partially filled level has particle-hole sym-
metry. Systems with filling fractions 2n+ v or 2n+2 —v

are then formally equivalent to lowest Landau-level sys-
tems with filling fraction v~ 1. The interaction is then
completely parametrized by the pseudopotentials
lV J, which are the correlation energies of two-particle
states with relative angular momentum m ~ 0. Essential
differences between fractionally filled Landau levels with
different quantum numbers n can only result from
differences in the pseudopotentials, which depend on n
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FIG. 1. Coulomb-interaction pseudopotentials for Landau
levels n =0 and n =1. Units are e /4ttel, l =

~
h/e8

~

' . Note
the reduction of Vo for n =1.

as well as the effective interaction V(r).
The mapping of a higher Landau-level system to the

equivalent v ~ 1 system allows a unified treatment of
fractional QHE phenomena in the extreme quantum lim-
it. Correlation functions calculated for the equivalent
v ( 1 problem are easily transformed ' back to the orig-
inal v. However, we will not do this, as we feel that it
obscures physical similarities between related fractional
QHE states.

The first eight pseudopotentials for a pure Coulomb
interaction V(r)~1/r and Landau quantum numbers
n =0 and n =1 are shown in Fig. 1. The most prominent
difference between the n =0 and n =1 cases is the reduc-
tion in the "contact" term Vo, the correlation energy of
particles in the same cyclotron orbit, which couples only
opposite-spin electrons.

Numerical exact diagonalization of finite-size sys-
tems ' "has proved to be a powerful tool for the study
of fractional QHE states. Motivated by Ref. 1, we ex-
tended an investigation' of the effect of varying Vo in

systems with spin reversal to filling fractions near 2 .
We used the spherical geometry where N particles

are confined to the surface of a sphere with N~ Dirac
monopoles at its center. In this formalism, the number
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FIG. 2. Effect of varying Vo in the six-particle N+=8 sys-
tem. The m &0 pseudopotentials were kept at the n 0
Coulomb values, for which Vp 0.987 (for finite Np, they
differ from values shown in Fig. I). Equivalent n-0 pair
correlation functions gp (in units representing local "filling
fractions") are shown for two values of Vp. Here r is the
geometric (chord) separation on the sphere; for Np 8, the
sphere diameter is 4.0l. Note the disappearance of the correla-
tion hole in gI'~ for Vp(0. 55, and the change from r to rs
short-distance behavior of gtt (the r 2 component becomes very
small). Inset: Projection of the ground state onto the HCM
ground state as a function of V0.

of orbitals in a Landau level is not Np, but Npp+ (2n+ 1),
and the QHE quantization v is not directly given by a
"filling fraction"; instead the more fundamental relation
of Ref. 7 must be used. An incompressible state occurs
at a sequence of sizes where Npp v 'N+b. Identifica-
tion of two successive members of the sequence deter-
mines v ddV/ddVp, . For example, the v 1/m Laughlin
states occur when 2l N~ m(N —1), where l = —,

' N~
is the orbital angular momentum of a lowest Landau-
level particle on the sphere.

To model a possible sequence of spin-unpolarized
states with v —,', we used a simple construction in

which pairs of opposite-spin electrons are placed in the
same cyclotron orbit and treated as charge-2e spinless
bosons in a symmetric Laughlin state. To correspond to
cr" —,

' e /h —,
' (2e) /h, this must be a "v —,

' " boson

state. On the sphere, the pair has orbital angular
momentum l N~, and the sequence is 2N p8(& N
—1), i.e., N~ 2(N —2), N even.

Though the pairing idea (suggested earlier' in the
context of spin polarized -electrons) gives a heuristic pic-
ture of our state, we emphasize that there are no attrac-
tive forces leading to bound-state formation. Rather,
"pairing" is a description of the collapse of a correlation
hole between opposite-spin electrons.

We studied the six-particle system (Np, =8) which

reduces to the diagonalization of matrices with dimen-
sions 152, 140, 106, and 102. We chose the n =0
Coulomb interaction, modified by variation of Vo. For
Vo at its Coulomb value, the pair correlation function

FIG. 3. Pair correlations of the six-electron HCM ground
state. Note that the spin density gI'~ —gI't vanishes identically
for r at the sphere diameter, implying the existence of a sum

rule special to this state (this is only an approximate feature of
the Vp 0.54 state in Fig. 2). gI't has exact rp short-distance
behavior.

gtt(r) vanishes like r as r 0, and there is a deep
correlation hole in gt~ (r). The system shows none of the
signs of incompressibility seen in earlier studies' at
y ~ 1

As Vp is reduced, a qualitative change in the correla-
tions occurs over a narrow range of couplings (Fig. 2).
The correlation hole in gt t is replaced by a peak at the
origin, and the r term in gt t becomes very small: r P be-
havior is seen.

Motivated by the observation that the Laughlin state
of the fully spin-polarized Landau level with v= —,

' is the
exact ground state of a model interaction potential with

V~ & 0, but V3 V5 . . . 0, we then studied a model in-

teraction with fV j (0, 1,0,0, . . .j. In complete analo

gy with the Laughlin ground state, we find that this
"hollow core" model (HCM) has a unique zero energy-
ground state when Npp 2(N —2). The pair correlations
of this state are given in Fig. 3, and show that it is very
similar to the ground state of the modified Coulomb in-
teraction model at Vo 0.54. This is confirmed by the
overlap of these two states, shown as an inset in Fig. 2.

In Fig. 4 we show the ground-state correlation energy
of the six-particle HCM as a function of the magnetic
flux Npp. For Npp& 15, the zero-energy states are highly
degenerate, and all values of the total spin quantum
number S occur. N~ 15 is the lowest Aux at which a
fully spin-polarized (S=3) zero-energy state occurs.
This state is the v = —,

' Laughlin state. At smaller values

of N~ the maximum spin of the zero energy states -de
creases, with one spin reversal for every two flux quanta
removed from the system Anondegenera. te nonpolar-
ized ground state is finally reached at N p,

=8, which is

the v- —,
' state reported here. This is the lowest flux at

which a zero-energy state is found. A clear picture
emerges of gradual spin depolarization for v & —,', ending
with a nonpolarized incompressible QHE state at v = —,

' .
We now construct the analytic wave function +HcM
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Homogeneous states are rotationally invariant on the
sphere. These states are built from rotationally invariant
factors Z;j=u;vj —v;uj and are either totally symmetric
(N) states or totally antisymmetric (1 ) states, depend-
ing on whether m is even or odd.

To model systems without full spin polarization,
Halperin' has considered the natural generalization of

to a family of wave functions
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FIG. 4. Six-electron HCM ground-state correlation energy
as a function of the magnetic flux N~ and the total electronic
spin S. Full circles represent states where (for a given S) the

ground state is nondegenerate; cusps in the ground-state ener-

gy at these points indicate a QHE state. A Zeeman energy hS
must be subtracted to give the total energy; for v~ —,

'
(large

Nc, ) this gives full spin polarization in the ground state. For
& v & —,', and weak Zeeman energy (h Vl), the ground

state continuously depolarizes. In this model there will be a
cusp in energy at v=

3 entirely due to the Zeeman term.
Currently identified QHE states are indicated; the singlet state
at N =4 is the v —,

' state (sequence N& =
3 N), which is ob-

tained from the v —,
' state by particle-hole conjugation. We

tentatively identify the singlet state at N+ 6 as a v= —,
' unpo-

larized state with sequence N+= —,
' N —3.

for the zero-energy spin-singlet HCM ground state at
N+ 2(N —2). In the absence of spin-orbit coupling,
the many-particle wave function for spin-2 electrons
factorizes into a spatial part and a spin part. If the total
spin quantum number is S, the spatial wave function
must belong to the permutation group representation
(2( i )

1 ~). The Fock conditions' require that it
must be separately antisymmetric in a set of Nl = —,

' N
+S coordinates and the remaining set of Nt = —,

' N —S
coordinates, and that it is not possible to further an
tisymmetrize the function between the t spin coordi-
nates and one of the J spin coo-rdinates If cr; =t, f i.n-

dicates to which group a coordinate belongs, then the
second condition is

8,
~

1
—g~ b, 1

e(i,j) +.=0,

where e(i,j ) is the permutation operator that exchanges
the values of coordinates i and j.

In the spherical geometry, wave functions must be
polynomials of equal degree N+ in each pair of variables

(u;, v;) = (cos —,
' 8; exp(i —,

' p;), sin —,
'

8; exp( —i 2 P;) )

which are complex spinor coordinates on the spherical
surface. The Laughlin wave functions with v=1/m are
given by

([u;,v;j) =Q(u;v, —v;u)) .

where m(o, cr) =m, m(a, —cr) =m. For mt =mt =m,
(2) reduces to the Laughlin state + . Otherwise, the
states (2) have N~ —m =(v ) '(N —1), with partial
filling factors v (m —m)/(m tm t

—m ). The wave
function q't i' o describes a filled Landau level (v =2) and
has symmetry type (2 ).

For mt, ml odd, the wave functions (2) are antisym-
metric in same-spin coordinates. In general, however,
they do not satisfy (1), and are not acceptable wave
functions for a system with spin-independent forces.
Only the subset with m =m+1, rn even (which includes
Halperin's v = —,

' state ' ) are valid spin- —,
' electron

states. These are the product of a symmetric Laugh-
lin-Jastrow factor @~ with the filled Landau-level wave
function, and have odd-denominator v =2/(2m+ I ).

Other wave functions in the set (2) may describe elec-
tronic systems with two physically distinct components:
for exainple, spin-polarized electrons in two coup/ed 2D
layers, where interlayer interactions are weaker than in-
tralayer interactions. [We have previously found that

ia, )the state 0'3, 3, 1 corresponding to v= —,
' (v= —,

'
per layer)

can be stable in such circumstances. ]
To construct the unique HCM ground state seen in the

numerical study, we need a wave function with N+
=2(N —2) which is a spin-singlet [i.e., its symmetry
type is (2+iz) j, and which has no m 1 pair correlations
(spin-rotation invariance guarantees this provided WHcM

vanishes like Z~l~ as parallel-spin electrons approach).
While 0 i s 1 has v= —,', it has N~ 2(N —2)+1, does

not have a definite symmetry type, and vanishes if
opposite-spin electrons coincide. We multiply it by
a factor that corrects these problems:

P3 3 / per ( M '
~, where M~l»

' is a —,
' N x ,' N matrix-

of the inverse complex distances Z;~
' between the ith

spin- t particle and the jth spin- f particle. (The per-
manent per ~

M
~

is the symmetric analog of det
~
M ~. )

The permanent reduces the polynomial degree in each
coordinate by 1, and so 0 HcM has the correct N+. The
function ~33 ~ contains a factor Z;J for each pair of
opposite-spin particles; each term in the expansion of the
permanent corresponds to one of the (2 N)! ways of
grouping opposite-spin particles into pairs, and removes
the corresponding factors of Z;j from the wave function,
allowing it to remain finite when coordinates i and j
coincide.
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We note that detI M ' is a Cauchy determinant
fe;) 4,equal to +~ ~

—~, and so O'HpM can also be written

+HcM p2det I M '
I per I M (3)

To rove that (3) does indeed have symmetry type
(2 ), and hence establish that it is the required wave
function, we need a mathematical result that the product
of the Cauchy determinant [i.e., that of an N &&N matrix
of the form (x; —yJ) '] with the corresponding per-
manent is a function of symmetry type (2 ) satisfying
the Fock conditions. Though we have not found a simple
algebraic proof, numerical evaluation of the left-hand
side of (I) for small N (~6) and arbitrary values

{x;,y;) confirms that it vanishes identically, empirically
proving the required result.

A simple physical picture emerges from our study.
The two spin components of an unpolarized electron gas
at v —,

' have partial filling fractions v —,'. This is in

the range v~ 3 in which a single-spin-component elec-
tron gas can have r behavior of its pair correlations at
short distances. However, the interactions between
opposite-spin particles force a correlation hole in gI'1
when Vo is large. This excluded area effectively in-

creases the density of each spin component above

filling, forcing r behavior on g . Collapse of the corre-
lation hole as Vo is decreased allows an effective expan-
sion of each of the two components of the unpolarized
electron gas and the restoration of r correlations.

The new features of the experimental regime explored
by Willett et al. ' include lower magnetic fields (hence
lower Zeeman energy) and electrons with higher Landau
index (n I), which have a lowered Vo. These are
features favoring our new spin-singlet half-integral frac-
tional QHE state O'HcM, the existence of which was pre-
viously unsuspected. We believe that +HcM is a very
promising candidate state for the observed v —', frac-
tional QHE, though definitive conclusions cannot be
reached without quantitative studies using reliable values
of the {V l and the Zeeman energy appropriate to the
experimental conditions.

One of us (F.D.M.H. ) is the recipient of an Alfred P.

Sloan Foundation Fellowship.
Note added. —Numerical studies' carried out since

the submission of this Letter appear to show that projec-
tion of a "realistic" V(r ) (including layer-thickness
effects) into the second Landau level does not, on its
own, lower Vo sufficiently to produce a v= —,

' QHE.
Landau-level-mixing effects become more important at
the lower magnetic fields of Ref. 1, and we are investi-
gating a possible mechanism' for selective additional
reduction of Vo involving virtual admixture of states with
different Landau index.
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