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Better Way to Measure f in the Linear o Model
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It is argued that the zero-momentum two-point function in a finite box can be used to get f in the
linear cr model. The method is based on a soft-pion finite-size theorem which is conjectured to hold if
the boundary conditions are periodic. The present procedure is expected to be much more efficient than
a previous proposal.

PACS numbers: 11.40.Ha, 11.15.Ha, 11.30,gc

Several years ago it was conjectured on the basis of
the triviality of p that, within the standard model, the
Higgs-boson mass cannot exceed an approximately cal-
culable upper bound. ' The method proposed for our ob-
taining a lattice estimate of the bound to leading order in

the weak gauge coupling required a set of Monte Carlo
measurements on a latticized Gell-Mann-Levi linear ct

model. The Lagrangean density, generalized to O(N), is

given in Minkowski space by

/ = —' tl yrIPy ——' trt 2/2 —(4N) ~g2(y~)2

Getting the bound would also imply that (1) becomes
trivial when the UV cutoff is removed.

The proposal was inspired by Freedman, Smolensky,
and Weingarten, who showed triviality for the N= 1

case in the symmetric phase. It was shown there that, if
the UV cutoff is taken to infinity while the bare mass is

adjusted so that the physical mass is kept fixed, then, for
any tuning of the wave-function renormalization and of
the bare coupling which gives finite, nontrivial Green's
functions at finite distances in the inverse physical mass,
the physical four-point coupling is forced to vanish at
infinite cutoff'.

In the broken sector there is no finite correlation
length. If (ttt') 8"(o), p =(a,x), the pions are massless
and the cr particle is unstable. The most natural choice
for the quantity to be kept fixed instead of the mass of

p 00

the symmetric phase is the physical pion "decay con-
stant" f,. It is defined as follows: The currents J„'(x)
which correspond to rotations in the I-a planes, a=2,
. . . ,N, are normalized by the requirement that the corre-
sponding charges close the same algebra as the matrices
Tjhv =b&, B&J 8»8q, .—Let I

tr~(k)) be normalized, on-

shell, pion states of four-momentum k; then

(o I Jg (x) I
tt~(k) ) =if,k„b'~ exp( ik —x). (2)

(3)

Equation (2) is appropriate even if we still keep an

O(3, 1)-invariant UV cutoff' in the model. f is equal to
the vacuum expectation value, v, of the renormalized a
field, up to a finite, nonvanishing multiplicative factor.
Triviality now means that, when we take the UV cutoff'

to infinity while keeping the physical f fixed, we shall

always, independently of any other adjustments we make
(as long as the Green's functions stay finite, nontrivial
functions of distances measured in f„'), end up, at
infinite cutoff, with one additional stable, massless parti-
cle corresponding to the o field. To see that this implies
triviality, I introduce temporarily a small explicit
symmetry-breaking term which gives the pions a finite
mass m, . I am coming from the broken phase with vWO

and there, one has the, exact relation p~ —p~ =2k v . In
this relation X is an independently defined four-point
coupling where, for N=4, Ao2=go2/4. p (p is defined
similarly) is a parameter related to the full cr two-point
function 6; in momentum space we have

dm z, p (m').
m

Triviality follows upon the removal of the explicit symmetry breaking whose sole role was to extract the two-pion-cut
contribution from p

On the lattice Eq. (2) cannot be directly used to measure f,. f, could be obtained from the power decay of current-
current correlations but it is better to avoid dealing with composite operators if possible. A way was suggested in Ref.
1; it was based on the following:

(OI tt'(x)
I tt~(k)&=—z8't'exp( ik x)—(o) =—f z, a, '(p') —z 'p'.

p2~ 0

While now only simple expectation values are involved, two measurements are needed to get f: one to obtain (o) and

the other, z. Both measurements are potentially severely sensitive to finite-size effects and one may worry that, in prac-
tice, prohibitively large volumes would become necessary.

The purpose of this note is to propose a new way of measuring f,. While it is still true that only the simplest correla-
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tions are needed, only one type of measurement is neces-

sary and the finite-size effects, rather than posing a prob-
lem, are judiciously exploited. The method works for
periodic boundary conditions in all four directions.

The basic idea is very simple. In a finite box there is
no spontaneous symmetry breaking; only a measurement
of GL(x) =(p(x)p(0)l really makes sense. Spontaneous
symmetry breaking is a property of GL(x) in the limit
L~ oo

lim GL(x) —a+ +cb (lnx) d

L~ oo z~~ X
(5)

Clearly, a =(f,z) while b =3(N —1)z /8x . Equation
(5) implies

4g ( ) — +b +0 (lnL

x L ~ L2 L4

Unfortunately b' is not related in a simple way to b be-
cause the limit L ~ and the asymptotic expansion
cannot be interchanged.

Nevertheless b' does contain a factor of z and there-
fore it is natural to define a physical quantity c by

d'
L +G ( ) — f + +0 (lnL)

x L-~ L L4 (7)

In order to test the validity of the arguments about the
universality of c and to obtain an estimate of its value, I
turn to the 1/N expansion. If we latticize and Euclide-
anize (1), the action becomes

b'=z c. c measures the leading dependence on the
boundaries. This dependence must come from the pions
in the box of wavelength of the order 1/L. Soft pions in-

teract weakly, and to leading order, all their scatterings
can be parametrized by a single dimensional parameter,

f . Thus it is plausible to expect c to depend on the cou-
plings of the model only through f . But the physical pa-
rameter c is dimensionless and, hence, cannot depend on

f, either. We are thus led to the expectation that c de-
pends only on group theory (N), and kinematically, on
the box shape (if all the sides go to infinity in fixed ratios
of order 1; I shall deal only with the symmetrical case).
So it should be possible to calculate c once and for all
and to get f by observation of the leading size depen-
dence in

(8)S- —,'g, y(x) g„A„Z„—mp y(x) —(4N) 'gp2+„[y'(x)]'.

h„(E„)is the forward (backward) finite difference in the

p direction. Sums over sites x or over momenta r, s are For sufficiently negative mp, mL, vanishes as 1/L for
always taken over integer-valued four-vectors with each
component ranging from 0 to L —1. Now

GL(x) =NL +exp s x A(s).
s

An effective "pion mass" mL is defined in terms of the
couplings by

m =m +g L Q, D(r)
—I

D(r) = 4+„sin'[(x/L)r„]+mL2

I/mLL A —a/L +0(lnL/L ).

A depends on the couplings but a does not; a—0.1405. . . . The evaluation of a (see below) de-
pends only on the infrared behavior of D(r) and is there-
fore UV-cutoff independent. At N ~, h(s) =D(s),
and in view of (10), (7) holds with c= —Na. Since
z =1 at N =~, I feel that (7) is insufficiently tested.

To order 1/N we obtain after some algebra

'(0) mL+ —E(0) — gD'(r)E(r)
N 8(O)+ ' L4,

(i2)

8(s) =L Q,D(s —r)D(r), E(s) =g, [8(r)+gp ] 'D(s —r).

To the needed order in 1/L (12) simplifies:

I. '~(0)= ——,L 'gD'(r) [E(0)—E(r)]+gp E(0),
mLL N I wo

a 1+ 2@—1

L 2 N
——

~ s (p) ~(0) —~(p)—2

N "p S(p)+gp ' (i 3)
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where f~ —=fd p/(2x) 4 and

&(q) =1/ 4+„sin (q„/2), %(q) =2AQ(q)+ Q(q —p)Q(p),4 p

1E(q) = $(q —p) , —C(0)-q'~.
S(p)+gp q~ p

(i4)

For k =2rrr/L kept fixed and with k %0 we find at L =~
'(r) 5 '(k) =[I+(1—28)/N]k2+O(k Ink ). (is)

(k), being the inverse of the sum of the pion and cr propagators, contains a subleading logarithmic term represent-
ing the two-pion decay inode of o.

Comparing with (4) I confirm (7) to subleading order in 1/N with

1e= —(N —1)a, a —
1 —g 2e

n Z7l
(16)

The unbounded sum over n runs over all integer four-vectors except n =0; it converges rapidly. a has arisen from

I. -'gf (s) — j(q)—
s&0 Qq I L2

(17)

where f(s) =f(2ns/L) and f '(q) =q at small q. The 1/N correction had the least effect it possibly could have: It
restored the proper counting of pion states. It should be quite clear by now that (16) is very likely exact for any N. For
N =4 we obtain

QGL(x) —z (f'+0.42/L')+O((logL) /L ).4

For L sufficiently large that the correction is unimportant we should be able to measure f, easily if f L= l. This
makes f, a relatively large number in inverse lattice spacings or, in other words, it is practical to go to relatively high
UV cutoffs, which is what we would like to be able to do.

I now present an outline of a proof that

&M ):—L Q„GL(x) =z [f —(N —1)a/L ]+lower order

to any order in perturbation theory. By consideration of
the infinite-volume, leading infrared behavior of the pion
and cr propagators, it becomes clear that only the pions
contribute to the leading correction in (M ). Therefore
it suffices to prove the theorem for a nonlinear model
defined for an N-component field S(x) constrained by
S (x) 1. For such a system it has been known for a
while that O(N)-invariant correlation functions, evalu-
ated in an infinite volume at nonexceptional momenta,
are infrared finite. Therefore, in a finite volume, h, (r)
approaches a finite limit for 2zr„/L k„e0 kept fixed.
In four dimensions the infrared behavior is softened by
two powers of momenta in the integration measure for
each loop and therefore the appr6ach is faster than 1/L .
The most general expression compatible with S (x) =1
1S

1+L 4~ exp(2zir x/L) —1

,&p Al. (r)

where AL(r) approaches 8 (k) faster than 1/L for
2nr/L =kAO. By definition we have z (N —1) =I/bp
where 8 (k) =bpk for small k. In a finite volume we

now obtain

L. 'Q„G, (x)

=1 —„ I/B (k) —a/bpL +lower order,~k

establishing the result. The fiuctuating length in the
linear model can only rescale both the leading and the
subleading terms by the same amount and thus the
theorem holds there too.

Formula (18) could also be checked numerically, ei-
ther by the method of Ref. 1 or by investigation of the
shape dependence which affects the 1/L correction but
not the leading term. The shape dependence enters
through a by some appropriate rescalings of the com-
ponents of the vectors n summed over in (16). It might
be useful to calculate a for lattices corresponding to Lie
algebras with larger Weyl groups (in four dimensions
the natural choice is associated with F4) where periodic
boundary conditions are more complicated. Such lattices
hold the promise of being closer to being rotationally in-
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variant. To know that formula (18) is correct and useful
in practice would be very useful in general: For exam-
ple, the universality of c could be exploited also in QCD
simulations.

The main new point of the present paper is to propose
exploitation of Eq. (7) for measuring f„So.me variants
of Eq. (7) have been proposed before in other contexts.
Fisher and Privman write similar expressions using in-
stead of f, and z a helicity modulus and infinite-volume
magnetization. These parameters are related to ours; the
relations are simple at N =~, but for finite N some
group-theory factors may enter and these the author has
not yet worked out. Fisher and Privman used a phenom-
enological model and checked some of their results for
the spherical model which corresponds to the N =~ lim-
it. They also conjectured a formula which might work
for arbitrary N.

In particle physics, phenomenological Lagrangeans in

the context of soft-pion physics have a very precise mean-
ing. ' Finite-volume effects in QCD-related applications
have been recently studied by Gasser and Leutwyler us-

ing such phenomenological Lagrangeans. " It would be
nice if one could "go back to basics" and establish in-

dependently the validity of the usage of phenomenologi-
cal Lagrangeans, the same way that this was done in the
past for scattering amplitudes, ' but now for the pur-
pose of calculating leading finite-volume effects. There
are some problems in doing this: It is somewhat unclear
whether one has to incorporate explicit, subleading, size
dependences in the eA'ective Lagrangean. Nevertheless,
the author is guessing that some "6nite-size theorems, "
on the same level of rigor as the "soft-pion theorems" of
the late '60's and early '70's, are provable.

The technical approach for the calculation of the 1/N
and I/L expansions as well as the idea to use one to find

out about the other was mainly based on earlier papers
by Brezin and collaborators. ' Brezin and Zinn-Justin
have also investigated 1/I. corrections using a renor-
malization-group approach combined with an expansion
around two dimensions.

In general, it is the author's conviction that there is a
lot left to be gained when doing particle-physics-oriented
Monte Carlo simulations by paying more attention to
boundary conditions and boundary effects. For example,
in the problem at hand, the next correction to Eq. (7)
may give us a handle on the oxn coupling. The analysis
of this correction would become a necessity should the
logarithmic term in (18) turn out to be nonnegligible in

practice. In a diA'erent but related context, one should
also keep in mind some beautiful results obtained by
Liischer. '

Discussions with S. Nadkarni are gratefully acknowl-
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Note added. —Some recent developments that took
place after the circulation of the original preprint form
of the present paper ought to be mentioned: (a) The
method suggested in this paper has been successfully im-
plemented resulting in a very accurate and computer-
time efficient evaluation of f,. ' (b) Gasser and
Leutwyler have recently provided a more rigorous foun-
dation for their effective-Langrangean technique, ' and
this provides another (indirect) proof for the validity of
Eq. (18). (c) The constant a has been calculated for F4
1attices. "
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