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Exact Solutions for a Din'usion-Reaction Process in One Dimension
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This paper presents a new method for the solution of diffusion-reaction problems in one dimension.

The method is used to derive some new exact results for the polymerization (cl-cl aggregation) and an-

nihilation processes on IR and Z. Through we11-known dualities, these results have implications for the
T=O limit of the kinetic Ising model and for two interacting-particle processes, the invasion and voter

models. Prospectively, the method may be useful in providing one-dimensional verification for specula-

tions in the theory of diffusion reaction.

PACS numbers: 05.40.+j, 05.50.+q, 05.70.Ln, 82.35.+t

This paper considers a diffusion-reaction polymeriza-
tion process called "Ppoly. " Ppoly is a one-dimensional
irreversible diffusion-limited cluster-cluster (cl-cl) aggre-
gation process. cl-cl processes in more dimensions pro-
vide a theoretical paradigm for many aggregation phe-
nomena, including galaxy formation from cosmic dust,
aerosol coalescence, rainfall from clouds, and even chem-
ical polymerization.

Scaling theory, ' fractals, and the Smoluchowski co-
agulation equation provide models of aggregation, but
make approximations of uncertain accuracy Mod.els ac-
counting for dimensionality make incidental predictions
about one-dimensional aggregation. These predictions
can be compared with the exact results in this paper.

This paper also discusses "Pnihil. " Pnihil is a one-
dimensional model for diffusion-limited binary annihila-
tion such as the thermal soliton-antisoliton interactions
occurring after the photoexcitation of trans-polyacetyl-
ene. Like Ppoly, Pnihil also allows theoretical compar-
isons of annihilation approximations. I now define Ppoly
and Pnihil.

Ppoly takes place on a "medium, " which in this paper
is either IR, the real line, or Z, the lattice of integers. At
time t =0, there is some probabilistic distribution points
on the medium. Polymer chemistry provides a con-
venient terminology: We call the initial points "mono-
mers. " For simplicity, assume that co, the monomer
concentration (i.e., number per unit length, averaged
over the medium), is fixed and finite. On IR, co can be
normalized to 1; by contrast, on Z, the unit of length is
fixed and prevents the normalization.

After t=0, all monomers diffuse identically and in-

dependently and aggregate irreversibly when they meet.
The resulting point aggregates ("polymers" ) are indis-
tinguishable from monomers in their diffusive behavior
and also continue to aggregate when they meet.

A polymer containing k monomers is a "k-mer. " Be-
cause it is useful to think of a k-mer as containing k
monomers, and to think of each of these monomers as re-
taining a unique history, we distinguish between the 1-

mers present at t =0 ("monomers"), and those present at
later times ("1-mers").

The k-mer concentration is the number of k-mers per
unit length, averaged over the medium in question.

ck(t), the expected concentration of k-mers at time t,
will be the focus of our interest; the expectation (which
is usually implicit in the following) is taken over all ini-

tial monomer positions and over all realizations of the
diffusive processes.

The total concentration of polymers,

c (t) = g czk-t(t).
k 1

(2)

Ppoly (mod 1) is Pcoal; Ppoly (mod 2) is Pnihil; and

Ppoly (mod n) is the n-ary annihilation process, in which
a polymer is annihilated by the nth monomer to join it.
Results for Ppoly have implications for all these process-
es.

I will show that in Ppoly, kck(t)co is the probability
that a random monomer chosen at time t =0 will be in a
k-mer at time t. Since there are k monomers in each
k-mer, kck(t) is the concentration of monomers con-
tained in k-mers at time t. Because monomers are con-
served (note the important distinction between "mono-
mer" and "1-mer" here), co is the total concentration of
monomers at any time t. When (as is true in the cases I

cp(t) = g ct, (t),
k 1

is also the concentration of 1-mers in the coalescence
process, Pcoal. In Pcoal, the 1-mers diffuse and coa-
lesce when they meet, so that 1-mer+1-mer l-mer.
Pcoal on Z is the dual process of the voter model.

In the annihilation process, Pnihil, the 1-mers
diffuse and annihilate one another when they meet, so
that 1-mer+1-mer 0-mer. If one considers the 0-mers
to be diffusing "ghosts" obeying the reaction rules 0-
mer+ 1-mer 1-mer and 0-mer+ 0-mer O-mer,
Pnihil becomes Ppoly (mod 2). Hence, the concentration
of 1-mers in Pnihil is
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P(A, -(A, UA, )) = g ( —1)"P(A„). (3)

Given the initial positions of the monomers, Eq. (3)
gives the probability that Pp is the left-most monomer in

a k-mer at time t. Averaging Eq. (3) over all monomers
Pp, and over all initial states [i.e., over the distribution of
the initial distances between the monomer pairs (Pp,
Pk-i), (P-l,Pk-l), (Pp, Pk), and (P-/, Pk)] gi~es
ck(t)cp ', the probability that a random monomer is the
left-most monomer in a k-mer at time t.

If the monomers initial positions are in a renewal dis-
tribution' (i.e., the initial distances between consecutive
monomers are independently and identically distributed),
the distributions of the pairwise initial distances are in-

dependent of Pp. This leads. to the following simplifica-
tions: (a) The initial distances between (P —i, Pk i) and
(Pp, Pk) have the same distribution, and (b) averaging
Eq. (3) over all monomers Pp does not make any
difference to the common value of Eq. (3). For conveni-
ence in what follows, I shall assume an initial renewal
distribution.

Let pk (z)dz be the probability that the initial distance
between Pp and Pk lies in the interval [z,z+dz) [the
probability density pk(z) is sometimes a generalized
function]. For a renewal distribution, pk(z) is indepen-
dent of the choice of Po and determines the concentra-
tions ck(t).

examine) the averages implicit in the concentrations ex-
ist, the quotient of kck(t) and cp has the stated interpre-
tation.

Each polymer has two directions in which to meet oth-
er polymers. Let us call the positive direction "right, "
and the negative, "left." Within each polymer, define
the "left-most" monomer to be the monomer with the
left-most (i.e., most negative) initial position. Because
exactly one of the k monomers in a k-mer is the left-
most monomer, the previous paragraph implies that
ck(t)cp ' is the probability that a monomer chosen at
random at time t =0 will be the left-most monomer in a
k-mer at time t. This probability can be calculated as
follows.

Let P —] Po, . . . , Pk —
~ Pk be consecutive monomers,

ordered in the positive direction at time t =0, but other-
wise arbitrary. For the time being, let us consider a sin-
gle initial state so that the initial positions of these
monomers are fixed. Let Ao be the event that the two
monomers Po and Pk —

&
are in the same polymer at time

t. Let A ~ be the same event for P —
~ and Pk ~', A2 for

P ~ and Pk, and A3 for Pp and Pk Ap-(Ai UA3) is
the event that Po is the left-most monomer in a k-mer
containing PO, P~, . . . , Pk —~.

A i CAp, because the linear ordering of the monomers
in one dimension implies that a polymer containing both
P —] and Pk —

~ must also contain Po. Also, A3CAO and
A i A A 3 Ap. A Venn diagram of the A's show that

=:cp„a(t;z)bk(z)dz.
(5)

Equations (1) and (2) define analogous functions
b~(z) and b —(z) for c~(t) and c (t):

b+(z): -8(z) —pi(z), (6)

b (z):=a(z)+2 g ( —1)'Pk(z).
k ]

(7)

The substitution of Eq. (6) back into the analog of Eq.
(5) explains the simplicity of Eq. (6): The total polymer
concentration is equal to the concentration of those
monomers which have not met their right-hand neighbor.
The sum in Eq. (7) also has a simple interpretation: It is
the difference between the probability densities for Pp s
having an even and an odd neighbor at z.

Given pk(z), the annihilation Green's function a(t;z)
for different media and diffusion processes determines
the polymer concentrations. Consider, for example, po-
lymers diffusing without drift on R with a diffusion con-
stant D. Let z be the initial displacement between mono-
mers Pp and P. This displacement diffuses with diffusion
constant 2D. Hence, at any given time t, the probability
that Pp and P have met equals the probability that a
point starting at z, diffusing constant 2D, has passed
through 0. This equals

a(t;z) =erfc(z/(8Dt) ' ),
where

2 t —zerfc(z) =
&

e ' dz =1 —erf(z)Jz"'
is the complementary error function. '

When the polymers diffuse without drift on Z with a
diffusion constant D (i.e., they execute a symmetric
continuous-time, nearest-neighbor random walk' ), the
displacements between them again diffuse with diffusion

Let a monomer P begin at a distance z to the right of
Pp. Define the annihilation Green's function a(t;z) to be
the probability that the two monomers Po and P have
met by the time t. Integrating over the possible pairwise
initial distances gives

P (A p) =„a(t;z)Pk ~ (z)dz,

P(A, ) =P(A3) =
J a(t;z)Pk(z)dz, (4)

P(A2) = a(t;z)pk~~(z)dz,

where the integrations are over the entire medium.
Since P(Ap) =1 when k=1, we define a(t;0):=1 and
pp(z):=b(z) [8(z) is the Dirac delta";:= denotes a
definition].

The interpretation of Eq. (3) gives

ck(t) =cp a(t;z) [pk i(z) —-2pk(z)+pk+i(z)]dz
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constant 2D. On Z, the probability that the displacement has passed through 0 before time t is

a(t;z) =exp( 4D—t) I, (4Dt)+2 g Ik(4Dt)
k z+1

where Ik(z) is a modified Bessel function. '

The following results are an arbitrary selection of explicit solutions specialized from Eqs. (1)-(9).
For a Poisson distribution of monomers with concentration k on R,

Pk(z) =exp( —&z)[(Xz)" '/(k —I)!]X,

c+(t) =A. exp(2A, Dt)erfc((21 Dt)' ), c (t) =kexp(8X Dt)erfc((812Dt)' ).

The result for c —(t) is known.
For a deterministic initial distribution on IR, with monomer sites spaced k apart and each site occupied,

Pp(z) =If(z —kX ').

On IR, the monomer concentration is iL, and so

(9)

—1ck(t) =X erfc
8X'Dt '"

k+1—2erfc 2,&
+erfc

1+2 g ( —1)"erfc k

(8X Dt
c4. (t) =xerf, ,], , c (t) =x1

8X'Dt '"
The result for c —(t) is known. For the sam
tribution on Z, with concentration X, =1,

cl, (t) =exp( —4Dt ) [Ik )(4Dt) I—k 4. ) (4Dt—) j,

c+ (t) =exp( —4Dt) [Io(4Dt) +I ~ (4Dt) ],

c —(t) =exp( —4Dt)IO(4Dt).

The result for c (t) is known. These results and the
next easily generalize to lattice spacings X, & 1 on Z.

For an initial distribution on either R or Z, with mono-
mer sites spaced X apart and each site occupied in-

dependently with probability —,',
. j—1

Pk(z)=g 2 J b(z —P, ').
k —

1

On IR, the monomer concentration is —,
'

A, , so that

c (t) = —,
' Zerf((gz'Dt) ' ')

For the same distribution on Z, with k =1 and monomer
concentration 2,

c —(t) = —,
' exp( —4Dt) [10(4Dt)+I~(4Dt) j.

The last two results for c —(t) are new. The interpreta-
tion of b -(z) following Eq. (7) explains their simplicity,
since all sites have an independent probability —, of oc-
cupancy. Hence, at any site, excluding those next to Pp,
the probability of Pp's having an even neighbor
(P2, P4, . . .) there equals the probability of Po's having
an odd neighbor (P~ P3, . . . ) there.

Through linear ordering, Eq. (3) reduces diffusion re-
action in one dimension to the investigation of pairwise
collisions. Though objects in more dimensions may
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e initial dis-
demonstrate linear ordering (e.g. , concentric circles in
two dimensions), this method in effect appears confined
to one-dimensional processes. The practical solution in

Eq. (4) also requires that a monomer's movement be
indifferent to any of its encounters. Although subject to
linear ordering and monomeric "indifference, " the
method of this paper can solve many problems.

For example, the assumption of identical monomers is
inessential to solution: If the initial mass distribution of
the monomers is known, then the evolution of the poly-
mer mass distribution is easily derived from stated re-
sults for ck(t). In addition, a periodic medium, i.e., a
circle, IR (mod L), or a periodic lattice, Z (mod L),
presents no essential new difficulties. 9' Similarly, fol-
lowing Eq. (3), the restriction to initial renewal distribu-
tions was unnecessary for solution, but did remove an
averaging of Eq. (3) over monomers Po. Equation (4)
shows that this average is equivalent to the replacement
of Pk(z) for a single monomer Po with the average of
Pk(z) over all monomers Po. With the removal of the
unnecessary restriction to initial renewal distributions,
my annihilation results become as general as Balding's.

Versions of Ppoly based on more exotic random mo-
tions are also solvable. For example, consider a
discrete-time nearest-neighbor random walk on Z.
a(t;z), the probability that two monomers initially
separated by a distance z have met by time t, is then
complicated by a sum but provides no new conceptual
difficulties. Moreover, solutions when the monomers
diffuse with drift d WO are easily derived from the stated
results without drift (d =0): The motion of the polymers
only enters the solutions through a(t;z), and a(t;z) only
depends on the relative motion of monomer pairs. On IR,
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the relative motion when d&0 is still a driftless diffusion

with diffusion constant 2D: The solutions are the same
whether drift is present or not (this does not agree with

the conclusions of Kang and Redner ' ). On Z, the rela-

tive motion when d~O is still a driftless diffusion, but
has a diffusion constant 2D+ d, which should replace 2D
in Eq. (9) et seq.

Equation (3) can also be generalized to examine
correlations and higher moments of the distributions.
For example, as in Eq. (3), let P i,Pp, . . . , Pk —i, Pk be
consecutive monomers and Ap, . . . , A3, the correspond-

ing events. Let Bp, . . . , 83 be the corresponding events

for another group of consecutive momomers Q —i

Qp, . . . , Qt —i, Qt. One can show that

P([Ap-(A, UA3)][Bp (B|UB3)])

i,j 0

reducing the correlations between k-mer and l-mer con-

centrations to events involving four monomers.

Kang and Redner have obtained asymptotic results

for Ppoly and Pnihil based on scaling arguments and

Monte Carlo simulations. For an initial renewal distri-
bution on lit, let the mean and mean square distances be-
tween consecutive monomers be pl cp and p2. As
t ~, the asymptotics of the complementary error func-
tion' in Eq. (8), Parseval's theorem for Fourier trans-

forms, " and the convolutional form of renewal distribu-
tions' imply that

ck(t) -(2/ jx)(8Dt) [@2+2(k—1)pl'],

c+ (t)- (2/Qtt) (8Dt) 'I'p i.

These results agree with Kang and Redner's conclusions
about Ppoly. Some asymptotic analyses [e.g. , c (t) as
t ~, or ck(t) as k ~] for general initial distribu-
tions are delicate, but probably possible, and spatial IIuc-

tuations can be followed analytically in one dimen-

sion. ' ' Results along these lines may indicate general-
ities for more dimensions.

This paper has presented a new method for the solu-

tion of diffusion-reaction problems in one dimension.
The method allowed the derivation of some new exact re-
sults for Ppoly and Pnihil. Through well-known duali-
ties, these results have implications for the T=O limit of
the kinetic Ising model' and for two interacting-particle
processes, the invasion and voter models. ' Prospec-
tively, the method may be useful in the provision of one-
dimensional verification for speculations in the theory of
diffusion reaction.
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