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Anderson Localization for a Two-Dimensional Rotor
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A two-dimensional generalization of the one-dimensional kicked-rotor model is introduced. As in one
dimension, this model can be mapped on a two-dimensional Anderson model for localization. It is found
that all the states are localized in momentum space and that the localization length grows exponentially
with the mean free path, as expected from the scaling theory for localization. This suggests that the
correspondence between the quantum dynamics of chaotic systems and Anderson localization that was
found in one dimension holds in two dimensions as well.

PACS numbers: 03.65.Bz, 05.45.+b, 71.55.Jv

Quantum mechanical systems that are chaotic in the
classical limit have been studied extensively in recent
years. ' In particular, it was found that quantal effects
tend to suppress classical chaos. 3 For a certain class of
simple one-dimensional kicked rotors it was shown that
this suppression results in localization in angular momen-
tum. This localization is of a similar orgin to that of
Anderson localization of electrons on disordered lat-
tices. In the framework of the theory of Anderson lo-
calization the behavior of generic systems is determined
by their dimensionality d: For d ~ 2 all the electronic
states are exponentially localized, while for d ) 2 there
are extended as well as localized states. For the margin-
al dimensionality 2 =2 the localization length grows ex-
ponentially with the mean free path. It is natural to in-
vestigate whether the correspondence between the quan-
tal behavior of systems that are chaotic in the classical
limit and the Anderson-localization problems also holds
for dimensionalities higher than one. In this Letter we
will show that for a two-dimensional generalization of
the kicked rotor localization takes place in angular
momentum space and the localization length grows ex-
ponentially with the mean free path. This problem is of
great fundamental interest for the understanding of the
correspondence between classical and quantum mechan-
ics. ' It is also of experimental relevance for molecular
and atomic beam experiments and for the understand-

Hp(n t, n2) —,
'

[zt n t + z2n2 l, (2)

while nt and n2 are the momenta that are conjugate to
the angles 8t and 82 (the quantum operators are
n t

= i8/88t and n2 —= t'8/882). This—Hamiltonian de-
scribes a system that is kicked periodically and is inte-
grable in the absence of the kicking potential. The units
of time are chosen so that the period between the kicks is
unity. In what follows, the driving potential

V(8~, 82) k cos8~ cos82 (3)

will be used. This is a natural generalization of the
one-dimensional model with Hp= —,

'
ztn~ and V(8~)

=kcosO~. In the classical limit the motion that is gen-
erated by the Hamiltonian (1) is chaotic and for a suf-
ficiently strong driving potential there is diffusion in

phase space. ' In this aspect its classical behavior is
similar to that of the corresponding one-dimensional
problem.

The quantal behavior is determined by the Schro-

ing of mesoscopic systems. '

We will study the system that is defined by the Hamil-
tonian"

H =Hp(nt, n2)+V(8t, 82)g b(t —m),

where
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d8i d82;(„,g, +„,g, )
e ' ' ''t7(8i 02)

2~
(4)

where n=(nl, n2) is a two-dimensional vector. These
Fourier components then satisfy the tight-binding equa-
tion

Tnun+ Z Wrun+r Euni
r~0

where

T, =tan —,
' (t0 E,), —

(5)

with

E.= —,
' (r,n,'+ r2n2). (7)

The hopping-matrix elements are

w, =(r
I W(8, ,82))

d8( d82 —i (r 1 e, + r 82) W(8e l~ 2

where

W(8(, 82) =tan[ —,
' V(8(, 82)], (9)

and E = —W(i. If r(/tt and r2/tr are rational, then [T,]
is periodic and (5) describes a periodic solid whose

eigenstates are the Bloch states. For the model (1) these

dinger equation i&y/Bt =Hy (in units where Planck's
constant is 6 =1, which will be used in what follows). In
one dimension it was found that all the quasienergy
states are localized if r(/tt is a generic irrational number.
These states satisfy an equation that is similar to a
tight-binding model. In order to obtain a similar equa-
tion for (I), let us look on a specific quasienergy state y„
=e ' 'u (8(,82, t), where u„(8i,82, l) =u (8(,82, t+I).
Let u and u

+ be the values of u„just before and after
a kick, respectively. It is convenient to define u=(u+
+u )/2 and its Fourier components

u, =(n(n2
I u)

HO(n l.n 2) —
S V(81,82)U=e e (1O)

The matrix elements in the momentum representation
for the driving potential (3) are

eigenstates correspond to the quantum resonances. If
only r(/tt or r2/n is rational, the states are localized in
one direction in momentum space and extended in the
other one. If both ri/tt and r2/tt are generic irrational
numbers, [TJ behaves like a pseudorandom sequence.
The justification is similar to the one that was used in
Ref. 6. For the one-dimensional model that corresponds
to (1), it was found that the sequence [T„]is sufficiently
pseudorandom for localization to take place. However, it
should be mentioned that the localization length is equal
to that of the corresponding model where [T„] is truly
random only if V(8() is such that the hopping matrix
elements W, do not vanish for nearest neighbors only.
For the potential V(8i) =kcos8i the localization length
exhibits systematic deviations from that of the corre-
sponding random system. '

As for the one-dimensional case, W(8i, 82) is singular
for k ) z. Also for the two-dimensional case this singu-
larity can be avoided by a mapping on a tight-binding
model with diagonal and off-diagonal pseudorandom ma-
trix elements that are correlated. The derivation that
was introduced by Shepelyansky' for the one-
dimensional problem can be easily generalized to the
present problem.

The dynamics of a system that is described by the
tight-binding inodel (5) is determined by the hopping
W„ that tends to delocalize the particle, and by the diag-
onal energies T„ that tend to localize it. If [Tn] is truly
random, the scaling theory for localization predicts that
in two dimensions all the states are localized. More-
over, the localization length g grows exponentially with
the mean free path l, namely g =a exp(bl), where a and
b are constants. In order to calculate the mean free
path, it is convenient to use the single-period evolution
operator that propagates the wave function from a time
just before a kick to the time just before the next one.
For the Hamiltonian (1) it takes the form

U~ni, =e ' '( —i)"J&(k/2)Jq(k/2)[1+( —1) ' ']/2,

where J~(k/2) and Jq(k/2) are Bessel functions of the
first kind of the orders p = (r (+r 2)/2 and q

= (r (—r2)/2. The factor exp[ —iV] leads to transitions be-
tween different momentum states and is related to the
hopping-matrix elements in (5) via the relation (9). The
free-motion part exp[ —iHO] is related to the diagonal
energies T, of the tight-binding model (5). The assump-
tion that [Tn] is random is equivalent to the assumption
that the phase factor exp[ iE,] in (11)—is random.
Consequently between the kicks the phase of the wave
function is randomized. The resulting mean free path I

satisfies

I = g g (r(+r2) I Uo, I

k
p

~ —00 p
~ —oo

1 2
2' (12)

bk

where b =b/ J2.
(13)

where the explicit form (11) was used. If one assumes
that [Tn] is random, the scaling theory for localization
implies
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In order to test whether the localization theory really

applies to the model (1) the evolution of a wave function
that is initially localized on a definite angular momen-

tum state was investigated. For this purpose the wave

function was propagated with the evolution operator
(10) starting from the initial state a=0. The calcula-
tions were performed for various values of k, z~, and z2.

For generic values of z~ and z2 we found that after some
time the wave function ceases to spread in momentum

space, and its amplitude falls off exponentially, at a rate
that is independent of time. The amplitudes of the vari-

ous angular momentum states oscillate in time but their
magnitude is determined by an exponential envelope in

momentum space. The typical behavior of the wave

functions is depicted in Fig. 1. The localization length is

found from a least-squares fit of an exponential falloff to
these wave functions. As one can see, the wave functions
are isotropic in motnentum space. We analyzed the os-

cillations in time of an amplitude at fixed angular
momentum and found that they are quasiperiodic. This
refiects the fact that the quasienergy states are localized
and only a few of them have considerable amplitude on a

given momentum state. The localization length as a
function of k for zt =1 and z2 =&2 is presented in Fig. 2.
The numerical results are in agreement with the predic-

tion (13) of the localization theory with a =0.46 and
b=0.93. Different values of z~ and z2 lead to different
values of a and b. The numerical data rule out a power-
law dependence of ( on k. For rational zt/n or z2/n the
wave functions are extended. After several time steps
they spread on all the states of the basis that is used in

the calculation, as expected. There are special values of
zI/n and z2/rr for which this spreading does not take
place because of an infinite degeneracy's of the extended
states.

The main limitation of the numerical calculations is
the finite size of the basis that can be used. We used a
lattice of 256&&256=65536 states in momentum space.
The deviations from a straight line in Fig. 2 when

g~ 100 result from the finiteness of the basis and there-
fore (13) was verified numerically only for k ~ 5. Note
that the evolution operator (11) is a 65536X65 536 ma-
trix for this basis. The operator U was applied in two
steps. First exp[ —iV(8I, 82)] was applied in the 8 repre-
sentation, and then exp[ —iHo(nI, n2)] in the n represen-
tation. The transformation between the representations .

was performed by the fast-Fourier-transform method.
This method reduces the number of multiplications com-
pared to a direct multiplication by the matrix (11) ap-
proximately by a factor of 10000. The evolution of the
wave function was followed for 1023 and 2047 time steps
in order to verify the stabilization of the envelope of the
wave function. The quasiperiodic behavior of the wave
function was obtained with the help of its Fourier trans-
form in time.

In summary, we have shown that for the two-dimen-
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FIG. 1. Logarithm of the absolute value of the wave func-

tion for k =3.5, z~ = I, and z2 =J2 after m =1023 time steps as

a function of momentum along the n~ axis (dot-dashed line),
the n2 axis (dashed line), artd the diagonal (solid line). The in-

itial wave function is localized on n 0. The straight line is the

best fit for exponential decay of the wave function along the di-

agonal.

Q.l
0

FIG. 2. Localization length ( as a function of k. The rtu-

merical results are denoted by circles. The line is the best fit

for exponential growth. For this calculation we used v[=1 and
z2= JX
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sional rotor (I) all the states are localized and the locali-
zation length increases exponentially with k. This is in

agreement with the scaling theory for localization and
supports the correspondence between the quantal behav-
ior of classically chaotic systems that are defined by
Hamiltonians like ( I ) and Anderson localization on
disordered lattices, that is described by tight-binding
models like (5). In the present work this correspondence
was established for the first time (to our knowledge) for
two-dimensional systems. If it holds in three dimensions
as well, one expects to find there a transition between lo-
calized and extended states. This problem should be in-

vestigated in the future.
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