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Supercomputing the Eff'ective Action
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We describe a new method for large-scale computer simulation of the eff'ective action in lattice field

theories. As a first application, the scalar p model with spontaneous symmetry breaking is studied, and
the renormalization of physical parameters is calculated from the effective action. Mean-field scaling
behavior with calculable logarithmic scaling corrections at the trivial Gaussian fixed point (vanishing re-
normalized coupling) is supported by our results. Applications to the electroweak theory are outlined
and a bound on the Higgs-boson mass is estimated.

PACS numbers: 11.15.Ha

We introduce a new method for large-scale computer
simulation of the effective action from which one calcu-
lates the renormalization of masses, coupling constants,
field operators, and composite operators for bare input
parameters. The effective action when restricted to con-
stant order parameters is reduced to the better known
effective potential which is the focus of our first investi-
gations. We find that our method is very useful in the
numerical study of the Higgs-boson sector in electroweak
models with spontaneous symmetry breaking.

For illustration, we investigate here the continuum
limit of scalar lattice field theory with quartic self-
interaction in four dimension. The Euclidean lattice ac-
tion is given by

S= —,
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where m() and ko are bare-mass and coupling-constant
parameters. The scalar field variables p; are defined on
lattice sites labeled by i. The unit vector gc points along
the four positive lattice directions (the lattice spacing is
set to unity in our calculations).

The effective potential Un(p) has the definition '

broken-symmetry phase and has a direct physical inter-
pretation. The probability density P(p) to find the sys-
tem in a state of "magnetization" p is given by
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In saddle-point approximation it follows from Eq. (5)
that

close in spirit to similar definitions in statistical mechan-
ics. With this unique feature we can develop a direct
and visual physical picture of spontaneous symmetry
breaking and maintain at the same time other important
theoretical properties of I n(P). All observables of lat-
tice field theories can be derived from Un(p), or its natu-
ral generalization to the effective action Sn[pg which
will be introduced later. In the infinite volume limit
U(p) =limo Un(p) becomes convex and the relation
U(p) =I (p) can be shown. s

From Un(p) we extract the Euclidean Green's func-
tions at zero momentum:
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where 0 designates the finite lattice volume and the in-
tegration is over scalar field variables p; on sites labeled
by i Uo(p) . is related to Wn(J), the generator of
Schwinger functions, by a Laplace transformation:

n(jt —v„(q) ld — ott „(I) (3)e d =e

In standard textbook definitions the effective potential
I „(p) is derived from W„(J) by Legendre transforma-
tion. Wo(J) and I „(p) can always be calculated from
U. ((().

The known convexity of I o((()) makes it impractical in
computer simulations or analytic nonperturbative investi-
gations of the broken-symmetry phase. The effective
potential Un((s) which we will use is nonconvex in the
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where Z~ is the wave-function renormalization of the (s

field, m~ is the renormalized mass squared in lattice
spacing units, and Xtt is the renormalized quartic cou-
pling constant. In order to determine the renormaliza-
tion constant Z&, we can use the relation

riG(p') '/Bp'(, =Z, ',

where G(p ) is the two-point connected Green's function
in momentum space.

For an independent determination of Z& we can
generalize Eq. (2) and introduce the effective action
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S,a[II(x)] which becomes a functional of the space-
time-dependent order parameter II(x):

exp( —QS,fr[ad]) = Dtp]BI(p —p)e . (8)

In Eq. (8) the "functional B-function" B/(p —p) is a

symbolic notation for integrating all field configurations
orthogonal to p(x). In practice, Eq. (8) is implemented
for selected p(x) configurations which correspond to
fixed Fourier modes. In continuum notation we write

S,lr[y] - d x[U(p)+ —,
' Z,ff'(p)(r)y)'+ ], (9)

and Z& Z,a(p;„), by definition; Z,a(p) can be deter-
mined from our simulation technique as it will be out-
lined next.

It is easy to show from Eq. (2) that the identity

(10)

holds for the derivative of the effective potential. On the
right side of Eq. (10) the expectation value of the deriva-
tive of the classical potential is calculated when all field
configurations orthogonal to p are summed. Technically
we work in Fourier space and the zero momentum
Fourier mode is not integrated. To calculate Z,a(p), or
other terms in the effective action, one has to keep other
Fourier modes fixed in the functional integral.

We used two independent methods to generate the
probability distribution of the field configurations for
fixed II. The first method is a complete implementation
of the third-order Langevin algorithm in momentum
space. 5 We also developed a second algorithm in mo-
mentum space which is based on the recently introduced
unbiased hybrid Monte Carlo method. 6 We found the
unbiased hybrid Monte Carlo algorithm to be superior to
the third-order Langevin algorithm in efficiency. Our

production runs of the O(4) model are now exclusively
based on the hybrid Monte Carlo method. The speed of
both algorithms is proportional to AlnQ with helical
boundary condition and fast Fourier transform. One mi-
crocanonical sweep in the p model takes about 5X 10
s on a 8 lattice using fast Fourier transform. A typical
run for a given value of II contains about 10 momentum
refreshes with ten microcanonical steps between re-
freshes.

We first determine the critical line in the parameter
space of bare coupling and bare mass squared at the
crossover of the effective potential from a double-well
function to single well. We can only present here results
for the p model at one value of the bare coupling con-
stant. Other results will be reported elsewhere. At

25, which is strong coupling with respect to earlier
computer simulations, ' the critical point of the second-
order phase transition for infinite lattice volume is found
at mo, (~) —24.55(5) from finite-size scaling analy-
sis. '0

We calculated the effective potential at seven different
values of mo within a narrow range on both sides of the
critical point. The two-point function in momentum

space was also measured in unconstrained runs at every
value of mo for an independent determination of m~ and

Z&. The inverse of the two-point function in momentum
space was fitted against the inverse of the free and mass-
less propagator which is defined by Go ' =4+„sin (p„/
2) on the finite lattice with discrete momentum com-
ponents p„appropriate for helical boundary condition.
The slope of the fit determines Z& and the intercept at
zero momentum corresponds to mR/Z& (Fig. 1 represents
a typical fit).

From the analysis of the momentum space propagator
and the effective potential we determined the renormal-
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FIG. 1. The inverse of the momentum-space lattice propa-
gator is plotted against the inverse of the massless free
momentum-space lattice propagator of the finite lattice for
mb —24.6. I/Z~ is the slope and m~ is obtained from the in-

tercept.

FIG. 2. The renormalized mass mg and the wave-function
renormalization constant Z~ are plotted against r=1 —m$/
mg The solid line .indicates the scaling law for m~
—v ( r ) ( In ( r ) (

'~ . The dashed line for Z& is drawn to guide
the eye.
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FIG. 3. The renormalized coupling constant Xg is plotted as

a function of r. The solid line with the scaling behavior

kg —
[
in [ r [ [

' was calculated in one-loop perturbation

theory at the Gaussian fixed point.

1
FIG. 4. The left curve is the scaling law of the vacuum ex-

pectation value of pg, &pg) —4[ r[ [1n r [ [
'~, and the right

curve corresponds to mg/&pg1- [ln [r [

'~ with the same

scaling behavior as jXg. Both sides of the figure correspond to
the broken phase.

ized coupling constant A.z in the symmetric phase, the re-
normalized mass rnid and the wave-function renormaliza-
tion constant Z~ in both phases, and the vacuum expecta-
tion value of the renormalized field operator in the
broken-symmetry phase. The renormalized mass and Z&

are shown in Fig. 2 as functions of the bare-mass param-
eter for different lattice sizes. As depicted in Fig. 3, al-
though the bare coupling is strong, Xg is small and rap-
idly decreasing as we approach the critical line.

Assuming a Gaussian fixed point at Xg =0, the loga-
rithmic corrections to mean-field critical behavior at the
higher critical dimension d =4 were calculated earlier. "
Measuring the horizontal distance from the critical line

by r =1 —mo/mo, in the phase diagram, one finds

my= [r[ ' '[In [r[ [

XR ——[ln[r[ [

The logarithmic scaling corrections are consistent with
the data points as shown in Figs. 2, 3, and 4 where the
amplitudes are fitted.

The wave-function renormalization constant Z& in our
calculation was found very close to one in the critical re-
gion. This result is consistent with a recent effort to
match the scaling behavior and high-temperature expan-
sion. ' We find Z& close to one also in the broken-
symmetry phase where the high-temperature expansion
is not applicable. Our own results on the high-temper-
ature expansion which we used mainly for testing and
orientation will be discussed elsewhere.

The analysis we presented here was repeated for weak-
er and stronger bare couplings along the critical line.
Our results demonstrate to a high degree of accuracy
that in a whole range of the bare coupling constant the
critical behavior of the theory is consistent with a Gauss-

ian fixed point at Xg =0.
Although the Gaussian fixed point we found is trivial,

inside the scaling region we have a reasonable effective
theory with non vanishing renormalized coupling A,z.
The ratio mp/&pz) according to Fig. 4 cannot grow very
large before leaving the scaling region where explicit
cutoff dependence begins to show in physical observables.
Therefore, at fixed bare coupling a bound exists' ' on
the Higgs-boson mass mg =MH in units of Mu =g /
4&&~) where g =0.4 is the SU(2) gauge coupling and

Mu is the mass of the W boson. For ko =25 this bound
is about MH/Mu = 12 at z= —0.061 which corresponds
to MH =1 in lattice spacing units. The Higgs-boson
bound would change to MH/M~=8. 5 at r= —0.018
with MH =5. We do not expect significant changes in

the upper bound in the Xo ~ limit. We should also
note that our estimate of the Higgs-boson bound in the
one-component p model which does not exhibit Gold-
stone particles in the broken phase is not a very realistic
one. A more realistic determination of the Higgs-boson
bound in the O(4) model will be reported elsewhere. '

The generalization of our method to more cotnplicated
lattice field theories with spontaneous symmetry break-
ing is straightforward. We have already successfully ap-
plied our method to the O(4) approximation of the lat-
tice SU(2) Higgs model. ' The critical line in the bare
parameter space is observed at the crossover points of the
effective potential from convex to nonconvex shape. Al-
though there is no conventional order parameter for
spontaneous breaking of the continuous O(4) symmetry
in a finite volume, with the effective potential we solved
this difficulty and a clean signal is provided for the tran-
sition. The O(3) symmetry of the nonconvex effective
potential in the broken phase accounts for the three
Goldstone particles associated with spontaneous symme-
try breaking. The renormalization of physical parame-
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ters has been determined accurately in the vicinity of the
critical line. Work on the SU(2) Higgs model with non-

vanishing gauge coupling is also in progress.
During the course of our work we learned about a

computer simulation' of the traditional effective poten-
tial I n(p) but our results on mg, 1.g, (pg), and Z& are
quite different.
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