VOLUME 60, NUMBER 9

PHYSICAL REVIEW LETTERS

29 FEBRUARY 1988

Long-Range Correlations in the Two-Dimensional Spin- % Antiferromagnetic Heisenberg Model:
A Quantum Monte Carlo Study

Efstratios Manousakis and Roman Salvador

Supercomputer Computations Research Institute, Florida State University, Tallahassee, Florida 32306
(Received 1 December 1987)

Using an extended version of Handscomb’s Monte Carlo method we study the spin-3 quantum anti-
ferromagnetic Heisenberg model on square lattices of various sizes. The calculated correlation length
associated with antiferromagnetic order grows very rapidly as the temperature is lowered, suggesting an
essential singularity. Our results are consistent with those recently observed by neutron scattering done

on La;CuOQa.

PACS numbers: 75.10.Jm, 74.20.—z

The recently discovered high-temperature supercon-
ductors' exhibit interesting magnetic properties. The
La;CuO4-, material has a susceptibility anomaly at a
Néel temperature Tn which is sensitive to the value of y,
increasing from TnN=0 for y=0 to Tn=295 K for
y=0.03.2 Subsequent neutron-scattering experiments®
show that the materials order antiferromagnetically and
in a La;CuQ4 single crystal there are instantaneous
two-dimensional (2D) antiferromagnetic correlations*
exceeding 200 A for 7=200-300 K, with no average
staggered magnetization. Neutron scattering* and Ra-
man scattering from magnon pairs® provide a large value
for the antiferromagnetic (AF) coupling J=103 K.

There are theoretical studies which examine the possi-
bility of superconductivity mechanisms originating pure-
ly from electronic degrees of freedom. In some of these
studies the magnetic properties of the materials are one
of the central points. A common point of departure is
the Hubbard model in its strong-coupling limit.®’ In
this limit and at half filling this model is equivalent
to the spin-3 antiferromagnetic Heisenberg model
(AFHM)

H=J<Z$S,~~S,-, (1)
ij

where (ij) denotes nearest-neighbor unit cells in the Cu-
O plane and S; is the spin operator of the conduction-
band electron located at the ith cell. This model is ex-
pected to describe the dynamics of spin fluctuations in
the undoped La-Cu-O material.

In this paper we simulate the quantum spin- 5 AFHM
(1) in 2D using Handscomb’s method as it has been ex-
tended for antiferromagnets.® We perform the calcula-
tion on various size lattices and measure among other
quantities the spin-correlation function. The extracted
correlation length &(T) grows very rapidly as we lower
the temperature. For the temperature varying from
~0.7J to ~0.4J, & grows from ~1.5 to ~13 unit cells.
The behavior of the correlation length suggests an essen-
tial singularity. The detailed behavior of the correlation
function is different from that obtained by perturbative

renormalization-group analysis of the classical Heisen-
berg model. A dramatic growth of correlations is also
revealed by the analysis of the neutron-scattering experi-
ments* on La,CuQ, at room temperatures. If we take
the value of J of the order of 103 K, extrapolation of our
results at 7=200-300 K gives correlation lengths of the
same magnitude as those observed. *

The Hamiltonian (1) can be written as

—BH = (ﬁJ/2)§ (h#— hy;) +const, )
ij

8

where const=NJ/2 (N =number of units cells). The
operator h;; is equal to S;*S;”+S,7S;", and flips anti-
parallel spins and gives zero in the case of parallel spins.
This Hamiltonian, when derived from the strong-
coupling Hubbard model at half filling (see Ref. 7), de-
scribes processes in which the electron hops to a near-
est-neighbor cell occupied by an electron of opposite
spin, making the site doubly occupied momentarily, and
in the final state both return either to the original
configuration (h,%- term) or to the one with spins ex-
changed (h;; term). .

Following Ref. 8, any observable O can be calculated
as

(0)= Tr(Oe ~PH)  Zr=oXc,n(C)a(C,)
T Tr(e M) Y=o 2cn(C,)

rc) == B2 19 0, 0)),

, (3a)

) (3b)
 Tr(00,,0:, -+ 0;)
Q(Cr)— Tl‘(Q,’IQiZ"'Qi,) >

where i, denotes a link, {ij) for instance, and Q;, =h} or
hij. C,=li1,is, ... ,i,} is a sequence of r =r;+r; opera-
tors and r; (r,) is the number of A’s (h%s) in the se-
quence. If the h operators in C, do not form closed loops
the trace in zero. Hence for a square lattice the number
of ks in a string must be even and consequently n(C,) is
nonnegative. The trace of any string of operators is the
product of the traces of all the clusters. A cluster is a set
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of lattice sites connected by operators. An isolated site is
also a cluster (monomer). Given an operator sequence
forming a cluster, we can construct either two possible
states contributing to the trace or none. In the latter
case the particular sequence is not allowed. The trace
over the entire lattice is equal to either zero or 2™
(n. =total number of clusters).

A Markov chain generating a distribution z(C,) of se-
quences C, is the following. At each iteration of the ran-
dom walk we can add or remove any number n, or ng of
operators, respectively. We decide to add or delete an
operator with equal probability. We select a given
operator to be added with probability 1/4N and the
specific location in a string with r operators with proba-
bility 1/(r+1). We remove a given operator with prob-
ability 1/r. The acceptance probability for a transition
from the state C, having r operators to the state C, hav-
ing r'=r+n, —ny operators and satisfying the detailed

balance is given by
= a(Cl)
Lw [—1—] } @)

P(C,— C;))=min N 2(C)

where the factor w=1%, 2, or 1, for =0, r'=0, or r=0
and r'=0, respectively.

We have tested our program by comparison to the ex-
act one-dimensional case. We have also calculated all
the obseverables calculated in Ref. 8 and we agree com-
pletely. Our main interest is the calculation of the stag-
gered spin-correlation function

G(@)=(—1*T"N"1Y,(S,(n)S, (n+1)).

We checked that the calculated correlation function
satisfies the susceptibility sum rule.

We have performed calculations on lattices with sizes
102, 202, and 302 with periodic and open boundary con-
ditions (BC). The number of iterations that we per-
formed depends on the temperature and lattice size. For
the higher temperatures and smaller lattices, we per-
formed 0.5x10° iterations for thermalization, and 10°
iterations for measurements. For the lower temperatures
and bigger lattices longer runs were required for both
thermalization and measurements. The quantities which
required more iterations to reach equilibrium were ry,
and the G(r). For example, for the 202 lattice and at
temperature 0.4/ we performed 8x10% iterations for
thermalization and 12x 109 iterations for measurements.
Simulations at lower temperatures or larger lattices are
beyond realistic computational time scales.

We fitted the staggered G by the forms

Ae =71 for open BC,

t—L/2
E(T)

lim G(7) =

7—> o0

(5)

A cosh , for periodic BC,

where L is the size of the lattice. Figure 1(a) shows G
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FIG. 1. (a) Staggered correlation function for lattices of
size 102, 202, and 302 for T=J. (b) Correlation function for a
207 lattice at various temperatures. Error bars smaller than
the diameter of the open circles are emitted.

calculated for the above three lattices for T'=J with
periodic and open BC. The lines are obtained by our
fitting all except the first few points of G by the forms of
Eqgs. (5). As may be observed in Fig. 1(a), G is approxi-
mated very well by Eqgs. (5) for several orders of magni-
tude and the slopes are quite independent of the BC and
finite-size effects. As T is lowered and the correlation
length becomes comparable to the lattice size, the calcu-
lation of & requires larger lattices. We checked that the
projected correlation function, G,(x) =(1/L)X,G (x,y),
gives the same correlations lengths within error bars.
We found that open BC are more appropriate for the
measurement of correlation lengths. In Fig. 1(b) we
present G for our 202 lattice for various 7. The correla-
tions grow very rapidly in the range 1.0/-0.4J, giving
£(J)=0.9 and £(0.4J) =13.

In Fig. 2 we give an equilibrium configuration of clus-
ters in the 202 lattice for 7=0.5J (top figure) where
&~3.5. The filled (open) circles denote up (down) spins.
The clusters are drawn by solid lines. There is a large
cluster involving most of the lattice sites and some other
smaller ones. The lower part of Fig. 2 shows the clusters
for 102 lattice and temperatures 0.4J (left-hand side)
and 1.5J (right-hand side). In the 0.4J case we see al-
most a Néel configuration and only two clusters, one be-
ing monomer and another containing 99 sites. At
T =1.5J we have a rather disordered state with lots of
small clusters.
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FIG. 2. Top: Clusters in a 20? lattice at equilibrium and at
T=J. Bottom: Clusters in a 10? lattice at 7 =0.4J (left-hand
side) and at 7=1.5J (right-hand side). We only indicate one
of the two possible spin states of the cluster.

The correlation length £(T) is plotted in Fig. 3 on a
logarithmic scale (see also Table I). The dashed line
gives £(T) obtained from the leading-order contribution
to G at high temperatures G(n)=(8J/4)" and &(T)
=1/In(4T/J). Note that the agreement at high temper-
ature is remarkable. In the range of temperatures
0.5J < T < 10J the numerical results are independent of
lattice size. The behavior is clearly not linear; in fact,
the slope —dIné(T)/d(nT) increases rapidly with de-
creasing T and it is ~7 at 7 =0.4J.

Now we compare this behavior with existing theories.
An exponential growth of the correlation length as a
function of 1/T at low T is predicted by perturbative
renormalization-group (PRG) theory® of the classical
Heisenberg model, giving &£(T) =A(T)e /T, where the
preexponential factor at low temperatures is A(T) =CJ/
T. This form does not fit the data except in a small
range of temperatures. Choosing this range to be
0.4J < T <0.8J we obtain C=0.18 and g =0.19 and the
fit is shown in Fig. 3 by the dashed-dotted line. This
value of g is reduced from its classical value g =S 2,
which within PRG theory could be accounted for by
quantum fluctuations. The fit is not very good which in-
dicates either that the onset of the PRG behavior is at
lower T or that nonperturbative effects such as topologi-
cal configurations change the behavior of £(T). A well
known example is the XY model'® where a phase with
topological order exists because of vortices. Topological
excitations are known to exist in the 2D classical Heisen-
berg model'! also. It is believed, however, that in the
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classical model they do not alter the behavior predicted
by PRG.’ In the quantum AFHM the structure of the
ground state and the changes in £(T) which such excita-
tions may cause are theoretically unknown. We also
tried to fit the correlation length by a Kosterlitz-
Thouless ' form £(T) =Aexp(B/|T—T.|"). The fit is
good (solid line), giving v=0.5, the same as in the
Kosterlitz-Thouless case, and T, =0.3J (and 4 =0.178,
B=1.338). As a result of the Mermin-Wagner
theorem,'? the average staggered magnetization is zero
at T#0. However, the theorem does not exclude a tran-
sition to a phase where G decays algebraically (£=o0)
below some finite 7, because of topological order. This
fit could be fortuitous; the reader, therefore, should take
this only as an indication that topological instanton con-

TABLE 1. The correlation length for various lattices and
temperatures, and for open and periodic BC.

L=10 L=20 L=30
T Open Periodic Open Periodic  Open
0.35 9.6(2.0)
0.4 7.1(7) 11(6) 13.0(9)
045  5.2(5) 5.6(4)
0.5 3.3(5) 4.6(2.7) 3.4(3)
0.575 2.6(2) 2.5(2) 2.4(2)
0.65 1.82(8) 1.68(8) 1.74(6)
075 1.27(3) 1.40(5) 1.36(8) 1.36(3)
1 0.96(3) 0.92(2) 0.90(3) 0.88(2) 0.94(2)
1.5 0.611(8) 0.636(7) 0.61(1) 0.62(2) 0.60(1)
2 0.508(6) 0.507(7)
2.5 0.434(3) 0.440(5)
35 0.378(2) 0.386(5)
5 0.333(2)  0.345(6)
10 0.273(2)  0.265(D)
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figurations similar to those found in Ref. 11 might play
an important role in our case.

Regardless of any theoretical interpretation, our re-
sults are consistent with the neutron-scattering data.*
The neutron- and Raman-scattering data give a value for
the AF coupling of J=10% K. In the neighborhood of
room temperature, i.e., ~0.3J, a reasonable extrapola-
tion gives correlation lengths of the order of those ob-
served* or higher. The average staggered magnetization
at finite temperature in 2D is zero as expected. !?

The three-dimensional (3D) AF ordering of La,;Cu-
O4-, happens at a lower temperature scale than the AF
coupling J. This can be explained as a result of both the
weak layer coupling inherent in these materials and the
special crystalline arrangement which tends to frustrate
a 3D order. The orthorombic distortion presumably re-
lieves some frustration and produces three-dimensional
Néel order at Ty~200 K.
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Note added.— While this work was in press we ob-
tained the detailed behavior '3 of the correlation length as
a function of temperature. A detailed comparison with
the data as well as implementation of 3D effects due to
weak interlayer coupling (producing a Néel temperature
Tn==200 K) will be given elsewhere. '*
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