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Fractional Angular Momentum and Magnetic-Flux Quantization
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It is shown that the fractional angular momentum of charged particles orbiting around a magnetic-
flux tube would result in fractional magnetic-flux quantization. A crucial experiment to test for the frac-
tional quantum of magnetic flux as well as anyons is proposed and analyzed.
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The fact that charged particles orbiting around a
magnetic-flux tube with flux ® have an orbital angular
momentum (integer+q®/ch)h was known long ago.'
On the basis of a similar idea it was stated recently that
the flux-tube-particle composites called anyons have
fractional angular momentum.?3 Exotic statistics per-
taining to n identical anyons was also developed.® A
controversy still exists,>® since there is a very fundamen-
tal distinction between the canonical angular momentum
and the kinetic angular momentum which relates to the
energy. In the theory of anyons, however, the difference
between the canonical angular momentum eigenvalue
and the kinetic angular momentum eigenvalue is re-
moved formally by a singular gauge transformation?*
and physically by the discard of the return flux of the
magnetic-flux tube.’

Specifically, in the case of anyons, fractional angular
momentum (implying the canonical angular momentum
hereafter) might be possible. Then the fractional angu-
lar momentum would result in very unusual phenomena,
and it is of great interest to search for anyons as a prac-
tical matter. We now explore a possibility relating the
fractional angular momentum to magnetic-flux quantiza-
tion.® It is shown that the magnetic-flux quantization
must be consistent with the angular momentum quanti-
zation of superelectrons. If the theory of anyons is ap-
plied to a system consisting of an inaccessible magnetic
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where F, is the free energy of the normal state,
|w(x)|2=ns(x) is the density of superelectrons;
u* =2y and e* =2e are the mass and charge of a bound
pair, respectively.

Variation of F; with respect to y* and A yields self-
consistent equations
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flux and superelectrons in a superconducting hollow
cylinder, the fractional angular momentum of the su-
perelectrons leads necessarily to a fractional quantum of
magnetic flux trapped in the hollow cylinder. The result
contradicts a common belief that the flux trapped in the
hole of a multiply connected superconducting body must
be an integer multiple of a quantum unit. It is also
pointed out that the possibility of fractional flux quanti-
zation cannot be rejected on the basis of previous experi-
ments®'?2 which confirm the usual flux quantization, and
a special kind of experiment is needed to resolve the con-
tradiction.

In the present note we start from the Ginzburg-Lan-
dau (GL) theory to derive a general relation between the
angular momentum quantization of superelectrons and
the magnetic-flux quantization. An experiment to test
the trapped fractional quantum of magnetic flux as well
as anyons is proposed and analyzed.

The order parameter y in GL theory is considered as
the coherent wave function which, roughly speaking, cor-
responds to the center-of-mass wave function of BCS
pairs. One therefore can compare with the single-par-
ticle Schrodinger equation to define the single-particle-
like angular momentum of the superelectrons. The total
magnetic flux of the applied magnetic field and the field
due to the superelectrons can be explicitly calculated.

The free energy of a superconducting state is given by
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where ii is the normal unit vector to the surface. The su-
percurrent density is defined by
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Let us consider a two-dimensional multiply connected
superconductor with a hole A as shown in Fig. 1. The
fluxoid embraced by a closed contour C is defined by
London® as
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FIG. 1. Multiply connected superconductor.

the fluxoid then is
oL=(c/e*)P p-dl=(c/e*)$ pydo. 8)

The quantization of the fluxoid is equivalent to the
Bohr-Sommerfeld quantization condition, where p, is the
angular momentum of the superelectrons; ¢ is the azimu-
thal angle. If there exists an external magnetic flux
O™ =50 (0<86<1, ®Ff=ch/e* =Dy/2; Po=ch/e)
inaccessible to superelectrons through the hole, the frac-
tional angular momentum quantization of superelectrons

ﬁP¢d¢=h(integer+6), 9
leads, of course, to a fractional quantum of fluxoid:
@ =(integer+ 8) g 10)

In practical experiments the total magnetic flux
trapped in a superconducting hollow cylinder is different
from the London fluxoid except that J;=0 in the
cylinder. To obtain the trapped magnetic flux, Egs. (2)
to (5) should be solved in the cylindrical geometry.

An experiment to test the fractional angular momen-
tum can be prepared as shown in Fig. 2. An infinitely
long, thin solenoid (in practice the length of the solenoid
is much longer than its radius) coincides with the axis of
a superconducting hollow cylinder. One might establish
a stable magnetic flux 6®§ through the solenoid above
the transition temperature 7T,.. After the induced current
dies off in the cylinder (T> T, in normal state), one
cools the system below the transition temperature 7.

Now let us calculate the magnetic flux trapped in the
cylinder. In the presence of an external magnetic flux
confined in the solenoid, the superelectrons are subject to
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where the azimuthal supercurrent density is
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FIG. 2. Experiment testing the fractional angular momen-
tum and fractional quantum of magnetic flux.

an azimuthal vector potential

A =8Dg [ 2nr. an
The total azimuthal vector potential is
A=A+ A3, (12)

where A4; states the vector potential due to superelect-
rons. According to Wilczek® and Wu,* the external vec-
tor potential of inaccessible magnetic flux can be elim-
inated by a gauge transformation for convenience'3:
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The required A is, however, not a well-defined 2z
periodic) function of the angle ¢. This fact reflects itself
in the transformation of the wave function
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In GL theory all the “superelectrons” are described by
the same, coherent, wave function y which is single
valued. The mth eigenfunction of angular momentum is

V’m=Rm(")eim¢, (15)

where m is the integer. The allowed angular wave func-
tions therefore have the fractional spectrum of angular
momentum

v'(r,0) =exp(idp)y(r,9).

(16)

The substitution of 44 and y'(r,¢) into Egs. (2) and (3)
yields the equation for R,,(r) and the equation for
Ay (r):

po=(integer+8) h.
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Exact solutions of R, (r) and 4;(r) satisfying the boundary condition (4) are
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and Since the magnetic flux 6®¢ in the solenoid is estab-

s _ lished above the transition temperature 7., there is no

A (r) =l(m+8)/2xr1®g. @D induced electric field applied to the superelectrons which

The new consequence from the theory of anyons is ~ appear when the temperature is below T.. The solutions

that the fractional angular momentum of the superelect- (20) and (21) with a zero supercurrent density corre-

rons results in an irrotational vector potential (21) sponding to the state of the lowest energy are physically
(VxA*=0) which leads to neither magnetic field nor su- reasonable.

percurrent in the superconducting cylinder. Therefore On the contrary, if the angular momentum of the su-

the external magnetic flux in the solenoid remains and perelectrons is quantized in the conventional way, the

the total magnetic flux trapped in the superconducting applied magnetic flux in the solenoid would induce a net

cylinder is equal to the London fluxoid supercurrent in the superconducting cylinder. Solving

the set of nonlinear equations (2) to (5) with perturba-

®L=§A‘- dl=(m+38)Dg. (22) tion theory, it is easy to obtain the distributions of mag-

| hetic field and supercurrent density in the cylinder'*:
Hz(r) = (80§ /xR*)D ~'[Ko(n)Io(r/iL) — Io(n) Ko(r/AL)]; (23)
J5(r) =(=60¢c/4n’R DAL Ko () I (r/hL) + 1o(n2) K (r/A) ] (24)

Here I and K are the Bessel functions of imaginary argument, '®

D=1y(n2)K1(n1) — Ko(n2)I2(ny),
and

m=R/AL, m=(R+d)/r; (25)
R (R+d) is the inner (outer) radius of the cylinder, while

AL =[u*c¥/4ne*2n 012 (26)

is the London penetration depth, n{® being the density of superelectrons in the absence of magnetic field. The total
magnetic flux trapped in the cylinder can be calculated and is equal to'*

O7 =md§ + 603 {1 +D ~'[Ko(n2)Io(m) —Io(n2)Ko(m1)]
+ (Znijmz)[Ko(nz)Il(nz) —Iom)K () 1+ Q2/Dn) I o(n2)K (1) —Ko(nz)ll(m)]}. (27)

In practical experiments, R and d are much greater than |

AL~5%10 "% m. If we take the large-argument limit of penetration depth. In the cylinder, electrons on a ring
the Bessel functions in Eq. (27), 1> n;> 1, the total with radius r (r—R>A1; R+d—r>\L) satisfy, in
magnetic flux trapped in the cylinder is approximately zero-order perturbation, the Schrédinger equation
uantized:
1 (—h2/2ur?)(d/do —iy) yu =Emym, (29)
7~ (m+28/m)PF ~mdy/2. (28)
T Mm% 0 where u is the mass of an electron and y®y is the mag-
On the basis of the phenomenological theory of super- netic flux embraced by the hollow cylinder. The spec-
conductivity, we have shown that when an inaccessible trum of energy is

magnetic flux §®y/2 exists, the magnetic flux trapped in
a superconducting hollow cylinder is quantized either as
(integer+8) X ®o/2 or (integer) X®o/2 depending on the The low-energy state for the paired system requires
quantization condition of angular momentum. One e (W —

might think that the fractional flux quantization would M=y=—M=y. @D
be rejected theoretically by the requirement of low ener- If the fractional angular momentum quantization due to
gy of the electron pairs in BCS theory. However, the the external magnetic flux (®** =§dy/2), namely,

fact that fractional angular momentum quantization re-

Epx=Hh221) (M —y)2 (30)
16

= = L
sults necessarily in the fractional magnetic-flux quantiza- Py=Mh=(m+38)h, (32)
tion is even more obvious from the viewpoint of the BCS m being an integer, is allowed, from (31) one immediate-
theory. To see this, let us follow Schrieffer'® to give a ly obtains the fractional magnetic-flux quantization:
simple argument for the fractional magnetic-flux quanti- — .
zation. For a macroscopic cylinder we have that R>¢ y=(5+integer)/2, (33)
and d>\1, & being the coherent length while Ay is the @ = ydy =D +integer X Dp/2.
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The total flux takes, of course, discrete values, which
differ by integer multiples of ®o/2, but start from &X',

Let us now see how an experiment can test the frac-
tional quantum of magnetic flux. This is evident from
what we have said above. One must build a very well-
shielded solenoid in such a way that there is practically
no leakage of magnetic field. At room temperature a
flux ®°** which differs from m®y/2 is established
through the solenoid. One cools the system below the
transition temperature of the superconductor, taking
care not to change the current in the solenoid, and then
measures the total flux across the superconductor with
the aid of electron interferometer or SQUID. If this
value remains equal to ®°*', one obtains the fractional
quantum of magnetic flux as well as the anyons. If one
changes now continuously the current in the solenoid,
one will observe the usual jumps of ®¢/2 in the total flux.
But an important thing is that the absolute value of the
flux is shifted with a common amount ®* = §dy/2.

There are two new points in the experiment to test
anyons: (1) A nonlocal applied magnetic flux, namely,
the flux confined in a well-shielded solenoid is needed.
(2) The absolute value of the trapped magnetic flux
should be measured. In early experiments®~'? supercon-
ducting cylinders were cooled below the transition tem-
perature in the presence of an axial, uniform magnetic
field which, however, is local to the superelectrons. It
has been shown that'* the shielding current is necessarily
induced by the applied magnetic field and the total
trapped magnetic flux is quantized in the usual way that
®r~mdy/2. Recently the solenoid is used as a source
of applied magnetic field.'” But the experiment is ar-
ranged to measure the usual jumps of magnetic flux due
to the variation of the applied magnetic field in the
solenoid.

In conclusion, the fractional angular momentum of
charged particles orbiting around a magnetic-flux tube
would lead to the fractional magnetic-flux quantization
which has not yet been observed. The experiment pro-

posed in the present paper offers a possibility to test
anyons and fractional quanta of magnetic flux.
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