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The supersymmetrical gauge theory of strongly correlated electronic systems, based on a geometrical
approach to the quantization of the Hubbard model, is presented. It is shown that topological magnetic
excitations induce a long-distance interaction between the charged particles. This interaction, depending
on the statistics of the magnetic excitations, leads to the confinement or statistical transmutation
phenomenon and finally to the superconductivity. The long-wave theory of the short-range-order anti-
ferromagnetic insulator state is proposed.
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The discovery of novel superconductors has given rise
to searches for new mechanisms of superconductivity
characterized by Coulomb scales. The pioneer idea goes
back to Anderson, ' who pointed to the possibility of su-

perconductivity in strongly correlated electron systems
near the metal-insulator transition. In this Letter it is
shown that in canonical Hubbard-type models one en-
counters an unusual, for condensed-matter physics,
mechanism of attraction between charged particles
(holes), which at low concentrations induces supercon-
ductivity. Strong attraction emerges when the Neel state
of an insulator is destroyed by the quantum spin-wave
interaction. The short-range-order state (SRO), depend-

ing on the statistics of topological excitations, falls into
(i) quantum paramagnetic (QP) and (ii) quantum
spin liquid (-QSL) states. In the first case excitations of
the insulator are bosons with a gap. The holes embedded
in this state are in a conftning potential In the s. econd
case, excitations are neutral spin —, fermio-n s 'Th. e
holes form bound states with neutral fermions and
thenceforth change their spin and statistics. According
to Ref. 4 both states correspond to collinear antifer-
romagnets with integer of half-integer spins, respectively.
In the ordered Neel state there is short-range attraction.
Thus, the attraction between holes is a measure ofquan-
tum magnetic fluctuations. I shall show that models of
strongly correlated electron systems are supersymmetric
compact [periodic, (i), or antiperiodic, (ii) 1 Abelian

gauge theories, and the superconductivity is an analog of
chiral symmetry breaking, known in QCD. In this
Letter I shall concentrate on the problems of heavy holes
(which have no effect on magnetic ordering) in the per-
manent confinement (QP) regime.

The model and supersymmetry. —Let us consider the
Hubbard model with strong intra-atomic Coulomb repul-
sion, making use of atomic representation: Let f ~

a) j
= f

~
0), ~ t), ~ J)j be three possible states on a lattice site,

corresponding to the empty site and spin-up (and spin-
down) states. In terms of projection operators

X' =
~
a)(b

~
the Hamiltonian reads

The operators X's form a basis of the semisimple doub-
ly graded (supersymmetrical) Lie algebra Spl(1, 2)
=Osp(1, 2~C) given by the (anti)commutative rela-
tions

Jab gcdj —(gadpbc+ jtbcgad)pij (2)

where (+) should be used only in the case when both
operators are fermionic.

Considering other representations or different su-

peralgebras one gets a generalization of the model. For
example, let the atomic shell be a half-filled orbital sing-
let which prohibits all ionization processes, except ~s)
~

~
s —

2 ), thus establishing correlation of ions. Such a
model corresponds to the spin-s representation of the
algebra (2). In the realistic situation the hopping (t)
and exchange (J) amplitudes are governed by different
electronic processes and should be considered as indepen-
dent energy scales. Generally, effective Hamiltonians of
strongly correlated electron systems should be considered
as supergeneralization of magnetic Hamiltonians A.
hole is a superpartner of a spin excitation.

Quantization Here I pr.o—pose the Feynman integral
representation for Eq. (1) using the geometrical quanti
zation approach (also called coherent state method )-
for quantum mechanics associated with a semisimple Lie
algebra. (See also Batyev, where part of the results of
this section have been obtained. ) Assume that the Ham-
iltonian H(jgj) is an element of the group. Let g be a
unitary irreducible representation of the group. Take a
highest vector of the representation as a vacuum

~
0) and

consider its orbit Q (g) =gPg ', Q =Q, tr Q = 1, where
P= ~0)(0

~
is the projection operator onto the vacuum.
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Here F(fEj) is a quantum operator, tr is a Killing form,
and

L = —tr[H(tj)gl+S„du(tr[ga„ga, gj), (3)

where Q(z, u) satisfies the conditions Q(z, 0) =const,
g(., 1) =g(.).

Let us suppose that the classical ground state of the
model is a two-sublattice collinear Neel state. Take this
state as a vacuum

~
0): spins up in sublattice A and spins

down in sublattice 8, no holes. For spin 2, the element
of the orbit in each lattice site is

Q= 2 (1 —p)(1+m o) Z '+@~~+X' ijit+pgoo

where p =g ititiji; m =n in sublattice A and m = —n in

sublattice B; n is a unit vector, n =1; y are Grassmann
variables, obeying the constraint

(1+m o)iii=0

After some algebra one gets the Langrangean, which
can now be written for arbitrary spin S,

Z Yaifi~ Yai+ Z tijYni Ym+LM~
ai a&ij )

where the magnetic part has the form '
pl

du g; (m; B„m;x B,m; )L~ =S
4 0

g;& J;,m; m—, (S —,
' p;) (S —

—,
'—pj),

(4)

with the conditions m;(z, l) =m;(z), m;(z, 0) =const.
The supersymmetry transformations now read Bm
= I/fo'f; Sl/f =pf; (1 m ' 0') f' =0.

Local gauge invariance The co.—nstraint on y implies
that the hole is described by one component of y; which
is antiparallel to m;. This field can be singled out at the
expense of emergence of local gauge invariance. First
represent y —,

' (1 —m cr)rj thus solving the constraint,
then let cr n=go g ', where g 6 SU(2). Now rotate
the spinor to the z axis (U, V) =g 'rj. Then one has

y =Uz in sublattice A and y =Vz in sublattice B,
where z =g t ', z* =g

~
', z*z =1. Inserting these

terms into the fermionic part of Eq. (5), one gets

I.=g.Vt(ta, +A,)V.+g, Vbt(ta, A, )Vb—
+g,b t,b(A, b U, Vb+Ab, Vb U~)+Lbt,

where the vector gauge potentials are

A, =tr(cr'g 'B,g) =z*fi,z;
(7)

Ag =tr(a —g. 'gb).

Then the quantum thermodynamics is represented by the
Feynman integral over trajectories of the orbit,

TrF(gj ) exp(iH/T)
t p

tr [FQ (z)jexp i L [Q(z) j1z DQ (z).

In such a form the theory becomes locally gauge in-
variant. The gauge transformation g~gexp(i&a /2),
z z exp(ip/2) does not affect the vector n, yet changes
potentials and fermionic fields:

A,-A, + ,' i-a,y;

Ag exp[~ ~&i(p, +yb)];

U Uexp( 2 ip); V Vexp( —
—,
' ip)

Note that U and V particles have different charges with
respect to the "geometrical" gauge field A and hence-
forth are attracted. The magnetic part of the action can
also be treated as a lattice gauge theory: S(n, dn, dn)
=2SdA; n, nb —A~bAb~.

Long wave -action of antiferrornagnets. —In the long-
wave limit the ordered Neel state is conventionally de-
scribed by the action

t PL= —,
' d x dz[J '(B,n)'+JS (8 n) j (8)

where n' (n 1) is a soft variable, which is a direction of
the local spin in one sublattice averaged over many ions.
S is a magnitude of the spin of an ion. Note that the ex-
istence of local n does not necessarily imply long-range
order. Therefore, at least phenomenologically, at suf-

ficiently small S when fiuctuations become important a
phase transition into the SRO state becomes possible
(the critical value of spin might be, however, unphysical,
S( —,', but the quantum fiuctuations can be effectively
increased by frustration of the lattice' ).

In addition to Eq. (8) another term was suggested in

Ref. 4, related to the Hopf winding number of the n

field:

0= — d xA F e"""
p vA,

where

F„=B„Ag—8gA„= e' '(n, fi„nb8gn, )abc

4z
Spin and statistics of topological excitations —After.

2ttsH is added to Eq. (8), the topological excitations in
the 2D antiferromagnet, the skyrmions, ' acquire the spin
s (Wilczek and Zee" have elegantly demonstrated the
relation between spin and statistics of skyrmions). The
skyrmion in an antiferromagnet is a cylindrical domain,
i.e., the domain-wall loop bounding the Neel state, shift-
ed by a half period. The interior of the domain wall is,
roughly speaking, the insertion of the ferromagnetic
state. The spin s of the skyrmion is thus formed by the
spin of ions and should be proportional to the magnitude
S of the ion spin. It is therefore natural to associate s
with the spin S of the original Heisenberg model. In this
case the cylindrical domain in a half-integer-spin antifer-
romagnet is a spin-2 neutral fermion. In the SRO
phase the fermions become gapless (this is most probably
what is called the resonating-valence-bond state' ).
This phase will be referred to as a quantum spin liquid
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(QSL). The SRO phase, where the topological term is
irrelevant and the excitations are spinless bosons, is re-
ferred to as the quantum paramagnetic (QP) state.
(Note that it differs from ordinary paramagnets by the
violation of translational symmetry. )

Antiferromagnet as a gauge theory. —In the CP
representation the O(3) cr model, Eq. (8), becomes a
U(1) gauge theory. Putting JS=1 one gets

L =
2 S d x i (t8„+A„)z i (10)

where now A„ is an independent gauge field. The in-

tegration over z leads to a gauge effective action. The
gauge bosons are massive in the Neel state which is the
analog of the Higgs phase with (F„„(k)F„„(k))
-R, 'k at k 0, whereas for the SRO quantum-
paramagnetic phase

(F„„(k)F„„(k))k p =constR,

where R, —J ' is the dimensional scale of the system.
Global properties of the gauge group. Monopoles—As a result of the U(1) gauge group, Polyakov-'t

Hooft'z monopoles emerge: fF„+o„„=2ttq. A mono-
pole, having a hedgehog configuration in n representa-
tion, is a particle in 3D space. In the (2+1) dimension
this is a space-time point where the history of skyrmion
terminates. In the Higgs phase monopoles are confined
in pairs, which is illustrated by the "length" law for the
Wilson loop,

)p'(C) =(exp)(~Aedxe)-exp( —lIR, ).

It implies that external holes embedded in the Neel state
are particles with a mass -R, ', which are attracted by
a short-range potential. Properties of the SRO state is a
more subtle matter.

By virtue of the combined translational and time in-

version symmetry, RT, of the Neel state, one should dis-

tinguish between the two possibilities: (i) the periodic
compact, or, let us say, (ii) antiperiodic compact gauge
group. Here it is understood that under the local trans-
formation A, A, +ittb(x) the long-wave functional
does not or does acquire the sign factor expi
XS(A) ~ expiS(A). It is most likely that these two

possibilities correspond to integer or half-integer spins of
the Heisenberg model. This is supported by the follow-

ing consideration. In the time-aperiodic singular gauge
transformation localized in one point,

y;(P) —y;(0) =2ttb;p,

which affects the gauge field as A, A, +i&8;p, the ex
ponent of the lattice action (5) changes by the factor
( —1) . If the above hypothesis together with the hy-

pothesis on the topological term (9) are accepted, one is

led to the conclusion that the (2+1)-dimensional long-
wave gauge action for an antiperiodic gauge theory (i.e.,
for the QSL state) includes the topological mass term

(i.e., Chem-Simon secondary characteristic class ' ).
This term is closely associated with the anomalous
phenomenon of fermions in the gauge field. '

Conftnement versus deconftnement .N—ow we are
ready to consider the behavior of external charges in the
SRO phase. For the periodic compact (2+1) gauge
theory it has been proven' that monopoles are in a plas-
ma state. This implies the "area" law for the Wilson
loop, IV(C) -exp( —area/R, ), where area is the surface
stretched upon the contour C. The quantum paramagnet
is a conftnement phase I.n the (3+ 1)-dimensional
theory it is known that the confinement arises only when
the constant in Eq. (11) is large enough. The order pa-
rameter of the confinement-deconfinement transition' is
the so-called Polyakov line P(x) exp[i fpdzA, (x, r)]
which is not invariant under the central group [i.e.,
aperiodic global gauge transformations p(x, z) =p(z)]:
It acquires the factor exp[i/2[&(P) —p(0)l]. In the
deconfinement phase, where (P) is nonzero, the central
symmetry is broken.

As for the antiperiodic gauge theory associated with
the QSL state, one can state that the central symmetry is

always broken, i.e., even in the strong-coupling limit one
still lives with deconfinement.

Superconductivity in quantum paramagnets —In the.
limit of heavy holes, t &&J, the confinement of holes, i.e.,
disappearance of charged fermions from the spectrum of
the QP regitne, occurs. In the representation of the
Feynman path integral in terms of a sum over contours
with length L, the contours with well-separated U and V
are suppressed by the area law, while the long loops with
a small separation between U and V are not suppressed.
It reflects the world line of the meson b„U(x)
x exp(i f~ A„)V(y ), which is a vector charged massive
boson. For low hole concentration and high temperature
one can get the estimation

(b (x)b(0)) g(t R,/T) exp( L/R, ), —
z~ oo

which points to the instability with respect to meson con-
densation: (bt(x)b(0))~ ~A ~. This phase transition
breaks down the electromagnetic gauge symmetry, i.e.,
leads to superconductivity. The effect is similar to the
chiral-symmetry breaking known in QCD.

Enlargement of concentration of holes destroys the
confinement in the QP state, whereas the QSL is, to this
end, more stable.

Statistical trans mutation i'n the QSL state. Scenario.—More detailed analysis of the QSL state will be
presented elsewhere; here I only outline the qualitative
picture of how holes do feel in it. It is particularly in-

teresting in the (2+1)-dimensional space. Let us con-
sider an external particle in the field of the solitary skyr-
mion and rotate the system. Then by virtue of the factor
( —1) coming from the Hopf term (9) in the action,
the boundary conditions for the wave function of a parti-
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cle do change: yr(p+2tt) =lit(p) exp[i2tr(s+S)], where

s is the vacuum spin of a particle and p is the azimuthal

angle. Therefore, at half-integer spin S the particle lo-

calized on the neutral fermion changes its spin and

henceforth its statistics. Closely related phenomena were

recently discussed by Wilczek' and Wu, ' who have no-

ticed the connection of spin and statistics with the topo-
logical terms. Polyakov ' has recently produced an
elegant proof of the statistical transmutation in the
(2+1)-dimensional gauge theory with the Chem-Simons
term. Qualitatively, this phenomenon can be visualized

as follows: The interior of the domain wall (i.e., skyr-

mion) is a ferromagnetic loop. Hence, energy considera-
tion does favor localization of a particle on this loop,
along which it propagates as a free particle. It is a
bound state of a "spinon, " i.e., a neutral fermion spin

soliton, and a hole which obviously is a charged spinless
boson. Note that this state possesses the orbital momen-

tum 1 = 1. Besides, the alternative even-parity bosons,
which are bound states of two holes on the skyrmion with

twice the topological charge, are possible. A condensa-
tion of the latter states is not hindered which agrees with

considerations in Ref. 2.
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