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The nonlocal Vlasov-Maxwell dielectric response kernel, K(r, r'), is constructed by integration along

particle orbits in a nonuniform magnetic field. The phase integrals comprising the usual plasma disper-

sion function are altered, and contain a parameter characterizing the parallel field gradient. We numeri-

cally solve a 1D integral wave equation, including a parallel field gradient, describing the propagation,

mode conversion, and absorption physics. Significant changes in absorption are found for the small-k~~

regime.

PACS numbers: 52.25.Sw

In this Letter we address an issue of importance to
ion-cyclotron-resonance heating in fusion experiments
arising from a self-consistent treatment of the particle
motion in magnetic fields possessing a parallel gradient.
Such parallel gradients are manifest in magnetic-mirror
confinement, but they also occur in toroidal devices by
way of rotational transform from the poloidal field. '

The physical implications of a parallel gradient derive
from the fact that the guiding-center gyrofrequency,
Qs„ is not constant along a particle orbit, resulting in a
temporally and spatially localized resonance interaction. 2

Moreover, the screening effect, whereby the left-hand
polarized wave fields are nulled by the resonant particle
currents, is strongly modified by the localized character
of the wave-particle interaction.

Vx Vx E(r) —Ko dike'"'K(r, k) E(k) icopoJ, „&(r)

Previous analysis of the wave absorption was based on
expansions of the rf conductivity with strictly perpendic-
ular gradients, and led to the occurrence of the plasma
dispersion function, Z((co —no)/~ ki ~ v&h) from uni-
form-warm-plasma theory (vth =thermal velocity, co

=angular frequency of the rf, 0 =q8/m), in the
coefficients of the resulting wave equations. Since the
argument of Z contains k~], the wave number along the
magnetic field, use of this function implicitly requires
uniformity along B. In the presence of even small gra-
dients along B, this function must be viewed as an opera-
tor rather than a scalar.

In this Letter we generalize the mode-conversion and
absorption physics to include parallel as well as perpen-
dicular gradients by describing the wave propagation as
an integral equation of the form

(ko2=co2/c2) for the electric field E(r), or its Fourier transform, E(k) =(2tz) d re '"'E(r), arising from the an-
tenna source current J,„&(r), where K(r, k) is the dielectric kernel from the solution of the linerized Vlasov equation.
Our analysis is based on a "quasilocal" precept: While the rf conductivity is definitely nonlocal in nature, the extent of
the particles' phase memory encoinpasses less than a bounce time. This precept will be shown to be valid by the in-
clusion of realistic phase decorrelation mechanisms, thus providing an important improvement on earlier work that
used the quasilocal methodology.

Dielectric kernel and phase integral —The derivat. ion of the dielectric kernel follows from the linearized Vlasov
equation for the perturbed distribution f ',

[—ico+v. V+A(vxet) V ]f (r,v) = —(q/m)V f [1+(1/ico)vxVx1]. E(r), (2)

where E(r) is to be specified in a given modal representation. We substitute plane-wave modes, E(r) E(k)e'"', to
get f ' (r, k, v), the perturbed distribution at r from a single k mode. Integration along characteristics, followed by
summation over species and velocity, gives the plasma current in the usual manner. Insertion of this current in

Maxwell s equations, and use of linearity to sum over modes, gives wave equation (1). The mixed kernel K(r, k) strong-

ly resembles the uniform-plasma result in k dependence:

K(r, k) =I++(4tzq /ico m) dz d ve'~v[1(co —k. v*)+v*k] V„.f i (v*,r*), (3)
S

but contains position dependence through f, and the unperturbed orbits r* and v*. ttt=coz+k (r* —r) is the

1988 The American Physical Society 801



VOLUME 60, NUMBER 9 PHYSICAL REVIEW LETTERS 29 FEBRUARY 1988

particle-rf phase, where z is reverse time along the orbits. Following our quasilocal assumption, the velocities vI and
v J are expanded about their end-point values to first order in the local parallel field gradient:

viI (t) uiI+u J.t/2LII| u J (t) v J. u J.ullt/2LII (4)

The instantaneous gyrofrequency is Qs, (t) = Qs, (1 —unit/Lii —u J t /4Lii ). These forms conserve energy and magnetic
moment to order z, and are valid when z «4Lii/u .

We adopt the usual ordering of second-harmonic/minority-ion cyclotron-resonance heating to second order in k J pL
(Refs. 3-5) and perform a spatial transformation to local circularly polarized directions. With the assumption of a lo-
cal Maxwellian, the kernel becomes

~OO pOO p OO

K(r, k) =1+ig(2ro~/rovthn' ) dz„dvII v J dvt exp( —v /vth)
S

x [eiei[vt (I —vllt/2LI)e' '+(kt v J/4Q) e' ' —(k J viz/2QLi)e' 'e 'I']

+e e —[vt—(I —vIit/2LI)e'" '+(k Jv t/4 Q) e '+(kt vit/2QLi)e 'e'~]

+2e IIe(IvI+Ivi Iv J /t2Li )Ie J. (5)

Equation (5) contains the odd-order-in-k J. terms arising
from a perpendicular field gradient, where k J cosp is the
projection of k onto VJ B. Also included is the changing
gyroradius size. The particle-rf harmonic phases, y„, are

0e5

(a)
y„=(ro —n Q —k Ii v II ) t +n Q v I t /2L II (6a)

—v J (k ii t /4L I nQ z /12L Il
)—

—kz(vift/QR, +v J t/2QLve).

(6b)

(6c)

Part (6a) contains the usual uniform plasma phase, and
the dominant nonuniformity term arising from the
particle's streaming along the field gradient. Part (6b)
contains lesser nonuniformity terms arising from the
particle's changing parallel velocity, and its higher-order
effect on the instantaneous gyrofrequency. Part (6c)
contains curvature and VB drifts, assumed to be in the y
direction. Pressure drift terms, which are the effects of
Vn and VT, are not included but should be of the same
order as the VB and curvature drifts.

The velocity integrals in Eq. (5) are simple moments
of the Gaussian, resulting in straightforward algebraic
expressions. The remaining integral over r is the
parallel-gradient generalization of the plasma dispersion
function. Contributions to this integral will be limited

by collisional phase decorrelation, which determines the
maximum coherence time of the wave-particle interac-
tion. In one analysis of this effect, it has been conclud-
ed that the phase diffusion can be effectively modeled

by the replacement of the quantity e'~ with exp(iy
——,

'
(bItr ) ), where (b|tr ) is the variance of the phase due

to random collisions. We find pitch-angle scattering to
be the dominant collision mechanism, affecting y
through the kiiviit term, and we may estimate (by ) as
follows. Suppose that at time rj =jazz, the parallel ve-

locity is viiJ. , and let (1 be a small random change in pitch
angle between times r~ —i and ~~. Then vi[J. =v[ij —i
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FIG. 1. Replacement Z function, Z(g, a;y) vs g, for (a)
a = —10, the small-kii limit, and (b) a =0.5, the small positive
parallel-gradient limit.
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—v~(j. The cumulation of the phase change over time
gives

J J
byj2 =(k()v~6'l) g g rnn(J gag(—J'

m ln 1

The ensemble averages, with the assumption of no corre-
lation between scattering events, are

viz, m =n,
0 m&n

where v is the ion-ion defiection time. Taking the
continuous limit h, z 0 while jhz remains constant

gives

(b' y') = —,
' k'v' vr'

Despite the typically small value of v, the z dependence
causes the collisional phase diffusion to exceed terms
(6b) and (6c) for large r. Hence, inclusion of collisional
phase decorrelation permits us to treat these terms as
insignificant.

In summary, Eq. (5) produces a form similar to the
perpendicular-gradient analysis except for the replace-
ment of the plasma dispersion function with the new
quantity

Z((, a;y) =i — dx exp[ —x'(1 ——,
' ax) 2/4+igx —

—,
'

where &=(cv —nQ)/I kt I v, h is the usual resonance pa-
rameter, a nn/k~~ ikt ILtv, h is a new parameter
characterizing the parallel gradient, and y=v/I ki~ i vTh
is the phase diffusion parameter. We note agreement
with the classical result at a = y =0. We also note agree-
ment with Faulconer, and taking the I kt I 0 limit we
agree with Ref. 6.

The replacement Z function shows two new features
not present in the uniform-plasma response. First, and
most significant, is the presence of damping in the
ks 0 limit, for which Zcei I a I

't . Figure 1(a) shows

Z((,a;y) vs g for a —10, which is within this limiting
range. Effectively, the dispersion function broadens in

scale length and decreases in size as I a I becomes large,
consistent with the heuristic approach taken in other
work. ' The second new feature occurs as a approaches
zero, the uniform-field limit, from positive values. There
appears a marked oscillatory behavior near the reso-

yx'],

i
nance with average value equal to the uniform-field
form. Figure 1(b) shows such behavior in Z(g, a;y) vs (
for a =0.5. As a decreases, the oscillations first shorten
in wavelength, and then weaken as a drops below some
value determined by the collisional phase damping pa-
rameter y. The physical origin of this behavior lies in
the accumulation of phase change between particles
nearly at resonance with the rf over long times in the
weak gradient.

1D wave scattering and absorption coeQcients The.—
phase integral is employed in wave equation (1) which
we numerically solve as a convolution integral equation
in k space. Our 1D geometry, and field and density
profiles, taken from Ref. 1, have been chosen to repre-
sent the case of a tokamak with rotational transform in a
simplified sense. x is the direction of nonuniformity, and
B lies in the x-z plane, 8, being analogous to the toroidal
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FIG. 2. Low-field incidence on a minority resonance without

(top) and with (bottom) poloidai field. Transmission, dashed
line; reflection, short and long dashed line; absorption, solid
line.

FIG. 3. High-field incidence on a minority resonance
without (top) and with (bottom) poloidal field. Transmission,
dashed line; mode conversion, short and long dashed line; ab-
sorption, solid line.
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FIG. 4. Low-field incidence on a second-harmonic reso-
nance without (top) and with (bottom) poloidal field. Trans-
mission, dashed line; reflection, short and long dashed line; ab-
sorption, solid line.

FIG. 5. High-field incidence on a second-harmonic reso-
nance without (top) and with (bottom) poloidal field. Trans-
mission, dashed line; mode conversion, short and long dashed
line; absorption, solid line.

field. For rotational transform cases we have used

8~/8 = —,', . Several series of runs were made for typical
experimental conditions (f=60 MHz, Bo =40 kG,
n =o4 X10' cm, T=5 keV, k~=0 m ', R,„=3 m,
a„,~~=1 m, 95%D-5%H minority heating, or 100% D
second-harmonic heating), comparing the power trans-
mitted, reflected, mode converted, and absorbed for
plane-wave incidence on the resonance layer.

Power flow into and out of the resonance zone is calcu-
lated by our attaching uniform plasma regions to either
end of the slab, wherein power on each of the various
modes can be unambiguously determined. (No attempt
to define or investigate "local" energies or power division

among the various ion species is made in this Letter. )
Figure 2 compares the scattering coefftcients versus k, of
a minority-heating low-field launch case, with and
without rotational transform, for the above parameters.
Symmetry is clearly broken by the parallel gradient;
transmission appears to be systematically shifted in k„
which can be traced to the modal relation k~~ =brk,
+b~k„(b~=8„/8, bT=B,/8). Reflection and absorp-
tion are altered in a more fundamental way, with the an-
ticipated absorption at k, =0 being clearly evident.
This result has the significant effect of enhancing the ac-
cessibility of the cyclotron layer for low-field incidence.
Comparisons were also made for minority-heating high-
field incidence, shown in Fig. 3. Here the rotational
transform causes complete electron Landau damping of
the ion Bernstein wave close to the cyclotron resonance.
Results are also obtained for pure second-harmonic heat-
ing, shown in Figs. 4 and 5.

In summary, the implication from this analysis for ex-
periments is that the ion-cyclotron resonance is signifi-
cantly more absorptive at small toroidal wave numbers
than predicted by gradient-free theory. The increased
absorption arises from the nonlocal nature of the plasma
current at a resonance, with subsequent limitation of the
self-screening effect.
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