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We consider a noncanonical ensemble which involves a sample thermally connected to

aconite

heat
bath with specific properties. Treating the size of the heat bath as a parameter, we show that static
properties of finite samples are ensemble dependent. Monte Carlo simulations of phase transitions in

Potts models confirm the analysis and demonstrate significant reductions in computer time (sometimes

by a factor of 100) compared to canonical-ensemble simulations. For finite samples, second-order tran-
sitions are sharpened and are clearly distinguished from first-order transitions as the heat bath becomes
smaller.
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Computer simulations of model Hamiltonians involve

closed systems consisting of a sample, ~hose properties
we are seeking, in contact with a heat bath. If N and N'
are the number of particles in the sample and heat bath,
respectively, there are two broad classes of ensembles:
those where N' is infinite (such as the canonical ensem-
ble) and that where N'=0 (microcanonical ensemble).
Well known examples are the Monte Carlo method of
Metropolis et al. ' using the canonical ensemble and the
molecular-dynamics method of Alder and Wainwright
involving the microcanonical one.

Systematic differences can arise between results using
different ensembles purely because of finite N. The most
dramatic of these occur at first-order transitions when we

examine, for example, the temperature (I/P) versus en-

ergy (E) curves. An isolated (i.e., microcanoncial) sys-
tem can go through a first-order phase transition by
means of a succession of intermediate coexistence states.
If the system is finite, it will exhibit a negative specific
heat due to interfacial tension, and van der Waals loops
would show up if P(E) is evaluated in the microcanoni-
cal ensemble. It is known that such loops sometimes

occur in molecular-dynamics simulations. ' The coex-
istence states, however, have very low probability in the
canonical ensemble so that energy distributions are dou-

ble peaked and P(E) simply possesses an inflection

point like at a continuous transition.
The major objective of this paper is to interpret the

Gaussian ensemble introduced recently by one of us

(J.H. H. )6 as an interpolating ensemble and thereby ac-
count for ensemble-dependent effects in finite systems for
the first time. van der Waals loops at first-order transi-
tions are shown to be a small-N' effect, and, by applying
the technique to second-order transitions, we demon-

strate that the method is a valuable tool for diagnosing
the order of a transition.

Let S and E be the entropy and energy of the sample
and let primes denote the corresponding quantities of the
"thermometer" (a small heat bath). All quantities are
extensive unless otherwise stated. We adopt the view

that the static properties of the sample are described
uniquely by its density of states, p(E) =exp[S(E)], and

that the thermometer is a tool for probing the derivatives
of S(E) by measurement of the moments (E), (E ), etc.
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The total energy of the closed system is E, =E+E',
the total entropy is S,(E) =S+S', and the distribution
is P(E)~exp[S, (E)]. The Gaussian ensemble is ob-
tained by the specification S'= aE—' = a—(E, E—) .
a (&0) is the constant curvature of S' and is obviously
of order 1/N'. We shall henceforth refer to a instead of
N' as a parameter. The method is readily implemented
as a Monte Carlo process since the probability of a
configuration of energy E„ is P(E„)CLexp[ —a(E„—E,)'].

For a given set of input parameters fa, E„Nj let the
most probable energy for the sample be E. Expanding
S, (E) about E we obtain, up to second order in small
fluctuations of energy,

(P/C) +2a &0. (2)

The tildes indicate that the quantities are the true (mi-
crocanonical) values and are to be evaluated at E. The
expansion (1) implies that P(E) is a Gaussian and we

obtain readily (E)=E, (p) p 2a((E) E, ), and—

(C) C P 62/(1 —2aGz), (3)

where we have introduced the notation G„((E
—(E))"), n 2, 3,4, . . . . The limit a 0, —2aE, ~P
yields the canonical ensemble while the a , E, E
limit is the microcanonical case; thus the Gaussian en-

semble interpolates smoothly between these extremes.
Equation (3) recovers the canonical-ensemble definition
of (C) in the limit a 0 and it can be shown that, for a
given bath (a fixed), (3) is identical to the definition
(C)- —(P) (8(E)/8(P)). For a &0, it is possible for
(C) to be negative as long as (2) is obeyed; thus van der
Waals loops are permitted for finite N'.

While the above formulas are adequate for the estima-
tion of E and p over most of the range of E, a-dependent
deviations become significant near phase transitions be-
cause of large fluctuations. We approximate the
leading-order corrections by accounting for the third-
order term in (1) as follows. Let Ss=(1/3!)(d S/
dE )E and z =3S3C /(p +2aC) . By approximating
exp(x ) = I +x, we obtain

z +z(G2/2) —(Gs/4) =0, (4)

E (E) z
N N N' (Sa)

S,(E) Si(E)+ ' + (E E)—
8E 8E g

8'S 8'S'
2 8E2 8E2 , E

Consistent with thermodynamics, we define the inverse

temperature, p, and the heat capacity, C, through

P 8S/8E and C —P (8 S/8E ) '. Requiring
S,(E) to be a maximuin yields p 2a(E E, ) and—

and

P =(P) —2az. (sb)
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FIG. I. Typical &P& vs &E&/N curves for various a at a first-
order transition. Symbols are data from simulations of the

q 10 Potts model on an 8X8 lattice and are averages over
200000 MCS each. Curves are predictions using the data for
a 0.05 (not shown) to estimate p(E/N) Horizontal dashed.
line is from the equal-area construction for a 0.01. The nota-
tion is explained in the text.

z denotes the deviations of (E) and (p) from E and p
and can be numerically evaluated since Eq. (4) has only
one real root. z is a function of a and, for finite N, the
curves (p) vs (E) will in general depend on a through
(5). The microcanonical results, (P) P and (E) E,
are recovered when a ~ and the canonical limit yields
correctly (p) p and corrections of order unity in (E).
That these ensemble-dependent deviations vanish for
macroscopic systems is evident by our taking 1V

while retaining A, (~aN) =N/N'=const; the corrections
then vanish independent of the value of )I..

Since z ~8 p/8E, Eqs. (5) show that inflection points
in p(E), denoted [p,E }, are "fixed points" with
respect to 1V' and thus p* provides an alternative choice
for the transition temperature of the sample. Note that
far from phase transitions P(E) is a Gaussian (Gs=0)
and thus P 0 and ~ represent trivial fixed points.
Though the fixed points are a leading-order effect, we

noticed significant a dependences in p only at asym-
metric first-order transitions; the equal-area construc-
tion then provides a better definition for the transition
temperature.

In practice, the microcanonical limit is reached when a
is of the order of the maximum of 8P/8E (0.01-0.1 for
Potts models on 8 X 8 lattices). It is then possible to esti-
mate p(E/N) by integration of the (p) vs (E) curve for
the largest value of a and thereby obtain (p) vs (E) for
all smaller values of a. As will be seen, such calculations
agree very well with data from simulations.

We illustrate the validity of the above analysis
through siinulations of q-state Potts models on LitL
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FIG. 2. Energy distributions, P(E/N), in the vicinity of
IP,E*l of Fig. 1 for a -0.01 and 0.0005. Symbols represent
data and the curves are predictions as explained in Fig. 1 near
the fixed point. The probability distribution develops two

peaks when the P(E) curves do not show a van der Waals loop
(a 0.0005 and 0.001 in Fig. 1).
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FIG. 3. Typical (P) vs (E)//N curves for various a at a
second-order transition. Symbols represent data for the q 3
Potts model on an 8x8 lattice. Data in the transition region
are averages over 10 MCS. Some data have been omitted to
preserve the clarity. The curves are straight-line interpolations
between data points.

(=N) lattices. These models are convenient for our
purpose since the nature of the transition is q dependent
and many of the properties such as the nature of the
transition and the transition temperatures are exactly
known. The following notation is used below. P, (~)
is the inverse of the infinite-lattice transition tempera-
ture. Energies per site at the transitions in the infinite
lattice are denoted by E,(~) if the transition is second
order and by E — and E+ at a first-order transition.
(These values are given in Refs. 7 and 8.) The notation
P*(L) emphasizes the L dependence of P*. Computing
times are in terms of Monte Carlo steps per site (MCS).

Figure 1 shows typical (p) vs (E) plots at the first-
order transition in the q =10 model. While the P
values from the fixed-point rule and equal-area construc-
tion agree as shown in the figure, such a coincidence does
not happen at highly asymmetric transitions. Data for
Gi (not shown) confirm that this quantity vanishes at
P . The van der Waals loop disappears for small a be-
cause it is more favorable for the system to develop a
double-peaked distribution where the specific heats cor-
responding to the two peaks are positive. This is explicit-
ly shown in Fig. 2 where we have plotted the distribu-
tions in the vicinity of the transition. As expected from
the analysis following Eqs. (5), the N' effects vanish as
N ~ and the loops shrink to a horizontal straight line
in the limit. Using lattices up to 20x20, we found that
p, (~) —p*(L)~N ' in agreement with earlier work.

Figure 3 shows the behavior of P(E) at the second-
order transition in the q =3 model. The van der Waals
loops are conspicuous by their absence (no a depen-
dences were observed for a )0.05) and thus the method
provides an unambiguous diagnosis of the order of the
transition. We have also verified that the method clearly
distinguishes the second-order transition for q =4 and

the weak first-order transition for q 5. (Of course,
careful extrapolations as N ~ are unavoidable for a
conclusive diagnosis. ) Using den Nijs's value' of —, for
the critical exponent" v for q =3, we found that

P, (~) P(L)~L— '/" in agreement with theoretical
conjectures. '

The specific-heat data at the above second-order tran-
sition are striking. As shown in Fig. 4, we get the dis-

tinct impression that a cusp in C is developing for large
a. While it is evident from Fig. 4 that a sharp transition
in a finite sample would be smeared when the canonical
ensemble is used, there is no easy extension to the micro-
canonical limit since p(E/N) is discrete for discrete
models (such as Potts models) on a finite sample and the
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FIG. 4. Specific heat, (C)/N, as a function of P for the data
of Fig. 3. (C) is obtained through Eq. (3) and P from Eq. (Sb).
The curves are smooth guides to the eye. The second-order
transition is remarkably sharpened as one moves away from the
canonical ensemble.
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derivatives of p(E/N) are highly singular. But the finite
a in our simulations means that we are sampling a
smooth envelope of the singularities. Perhaps we can
meaningfully refer to an extrapolation to a =~ but not
the limit itselft Finally, while we find that the maximum
in C grows with L, any finite-size analysis of the data is
not feasible at present because of the theoretical and nu-

merical difhculties.
In conclusion, we have used the interpolating nature of

the Gaussian ensemble to show how static properties of
finite systems become ensemble dependent. The success-
ful prediction of the N' effects in Figs. 1 and 2 together
with the phenomena of Fig. 4 indicate that the density of
states is the key to understanding finite systems. Note
that the analysis has been facilitated by the complete
specification of S'. Such a treatment should also be pos-
sible with Creutz's interpolating ensemble' if S' can be
determined for his method.

Computationally, the method is advantageous because
(1) it involves Monte Carlo sampling and (2) it can ap-
proach the microcanonical limit. The first point implies

that, unlike molecular dynamics, the technique is applic-
able even to stochastic models and that ergodicity is less
of a problem. Thus the loops are easily reproducible and
become better defined as the computation time is in-

creased. (Contrast this with recent molecular-dynamics
results of Jellinek, Beck, and Berry' where the loops of
Ref. 3 disappeared when long-time averages were taken. )
The second point significantly reduces the computer time
at a first-order transition since, by using a sufficiently

large value of a, we can directly sample the two-phase
states. This avoids the double-peaked distributions and
the resultant hystereses which are characteristic of
canonical-ensemble simulations. Since the maxima of
P(E) grow with N, this feature becomes particularly at-
tractive when large lattices are involved. For example,
we found a van der Waals loop and obtained a good esti-
mate of P, (ee), E+, and E for the q 10 Potts model
on a 50x 50 lattice with only 5000 MCS; similar results
with the canonical ensemble required over 10s MCS.

Several new directions of research are available. For
instance, we can study nucleation processes at first-order

transitions and formulate detailed theories for the van

der Waals loops. Second-order transitions in finite sys-
tems now deserve a closer look especially since we find

that specific-heat data for the Ising model in three di-
mensions are similar to those of Fig. 4 while no "sharp-
ening" was seen in an Ising paramagnet. We need to see
if the cusps exist and if so, whether the critical exponents
have their infinite-lattice values. Such a development
would yield a deeper understanding of critical phenome-
na.
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