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Two-Particle Excitations in Antiferromagnetic Insulators
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The energy of one and two holes in a Hubbard antiferromagnet for nonzero exchange, J, in the Ising
limit is calculated within the Brinkman-Rice approximation. Only the p- and d-symmetry states bind
with an energy of order J. The implications for superconductivity and antiferromagnetism of doped
Hubbard insulators is discussed.
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Interest in nonphonon-induced pairing has been stimu-
lated by the discovery of the copper-oxide-based super-
conductors' and has prompted a reexamination of
strongly correlated systems. In insulating materials
closely related to those with the highest T„a three-
dimensional antiferromagnetic (AF) transition was ob-
served, as well as finite but long-range two-dimensional
AF correlations. Both the superconductive and magnet-
ic properties are sensitive to doping. One class of mod-
els, therefore, hypothesizes that pairing originates from
purely Coulombic effects, and the AF correlations there-
by induced in narrow-d-band materials.

A natural starting point is the strong Hubbard models
near half filling which describes an antiferromagnet with

—wg(c;t~ +H.c.)+J,QS;S'+J g(S,"S"+S
(ij ) (ij ) (ij )

The summations extend over all pairs of nearest-neigh-
bor sites on a simple two-dimensional square lattice; c;
are the usual fermion operators (cr spin); the spin
operators S;—:—,

' pc,t ~ c; (i =Pauli matrices); and in

the state space associated with (1), double occupancy of
a site is forbidden.

While (1) with iv » J, =J~ =J is essentially the large
Coulomb limit of the Hubbard model, it can also arise in
more complicated settings when charge fluctuations can
be integrated out and attention is focused on the spin de-
grees of freedom. We have split the magnetic interac-
tion into two pieces in order to have a parameter, J&/J„
which turns off the quantum fluctuations in the AF
ground state. For real materials J& =J,.

In the extreme J/w«1 limit, the ground state of a
hole involves a magnetic polaron. ' The kinetic energy is
minimized by making a disk of radius R ferromagnetic
so that the hole can sit at the free-particle band edge
with an energy —4w. A continuum calculation can only
be done precisely for J~ =0 (the polaron walls are sharp

1

for any J~/J, ~ 1), and yields

E = —4w+8. 5(J,w)' +O(J, ). (2)

While (1) predicts that it is energetically favorable for
many holes to share the same polaron, phase separation
is prevented by the full Coulomb potential. Purely as a
result of numerical factors, there is a sizable region of
small J/w, I & J/iv&'5X10, where the BR approxi-
mation with J,e0, described in the next paragraph, gives
a lower energy than (2) for a single hole. A strong-
coupling, lattice calculation is still appropriate and we
henceforth confine our attention to this regime. "'

Since the BR approximation will readily generalize to
two holes, we describe the one-hole calculation first for a
Neel state and J, &0. Starting from the ground state,
successive applications of the kinetic term in (1) create a
series of many-body states that can be labeled as a walk
or string of bond directions 1st, r2, . . . , rt), r; = ~x,
~ y, with no retracings, s;+~~ —r;. The tree or BR ap-

holes. In fact, a single hole is not in a simple Bloch
state since when it hops, it scrambles the AF arrange-
ment of spins in the ground state. The calculation of its
kinetic energy is a nontrivial many-body problem, which
has been studied by Brinkman and Rice (BR).' They
found that in the limit of J/w~ 0 the AF correlations in

the ground state lead to a narrowing of the band and
push the energy of the hole above the value it would have
in an empty band. The essence of the BR approximation
is to label the configuration space by distinct paths.
They also neglect the spin dynamics, which is not un-

reasonable for w/J»1, since the hole will hop many
times (creating a "string" of overturned spins) before the
spins can relax.

It will suffice to consider the Hamiltonian

«SJ)
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and I) Io)=0, htI0) = —,
' 43+,, I i)). Then the kinetic

energy is just —J3(At+I)), and we can find its mini-
mum exactly within the orthonormal set of states

I I) =
& J3h t'

I 0&, I & 0. If for the moment we compute
the exchange as if the walk is rectilinear, (1) reduces
to 13

HIo&=-2I»+J, Io&,

HI 1) = —2IO) —43
I
2)+ z J, I 1),

0 II& = —&3(II—»+ I I+»)+( l +I», I I&,

(4)

(Henceforth w= 1 in all formulas, and we take the Neel
state to be the zero of energy. ) A numerical solution

IZ)—=gee'"'e' """X (p)c (r)c (r+p) Io&,

proximation assumes that all allowed strings are distinct
states. The first real lattice state to be double counted
occurs when the hole runs around a plaquette three times
in succession. ' Most spin states with a common value
of the hole position, r =+I i;, are truly distinct, which is
why the approximation works so well. (In three dimen-
sions it gave a band edge of —245 = —4.47 versus an
"exact" series estimate of —4.45. ' )

If I 0) denotes a hole with no string, we define mutual-
ly adjoint "raising" and "lowering" operators, I) t, h as

I &ls ~ ~ ~ ~ &I) 2 I &ls ~ ~ ~ s ri+ )&s
1

3 &i+i+

(3)
I) Ii, , . . . , r(&= 1

yields a ground-state energy E) = —243+2.74J, / (the
coefficient 2.74 is accurate to a few percent for 1&J,
~ 5 x 10 ), and an average I which scales as J '/ and
equals 5.4 for J=0.02. Our various approximations have
not seriously biased either result greatly when J((1
since the exchange energy will always scale as Jl.

It is very misleading to think of the one-particle densi-
ty of states found in Ref. 10 as a "band. " Although its
width is of order 4J3, states near —2J3 have very large
(infinite for BR) mass for J~ =0.

The pair states correspond to two holes connected by a
string of reversed spins. ' Whether binding occurs is
subtle as is illustrated by a one-dimensional example'
where the hopping is nonzero only along the x axis but
the exchange is two dimensional and still given by (1)
with J& =0. A simple but exact calculation shows that
there is no binding for J, &0.2 and the relevant energy
difference for small J, is large, i.e., ——J, , as a result
of the antisymmetry. The binding for larger J occurs
purely because, when hopping is suppressed, the ex-
change energy is minimized with the two holes contigu-
ous.

While the single-hole ground state could be found on a
set of states

I I) corresponding to sums over nonretracing
configurations of the string of length I, the fermionic na-
ture of holes dictates a more complex structure for a
pair. For the latter we shall construct a set of "string
states" labeled by two integers, which satisfies the re-
quirements of statistics and, although not exactly closed
under the hopping term in 0, provides a good variational
basis.

A general state with a pair of holes on the nearest-
neighbor sites can be written as (p = ~ x, ~ y)

(5)

where repeated indices are summed over, Z (p) is a form factor that we will determine later, and
I
0) is some singly

occupied ground state. The anticommutation of fermionic operators imposes the constraint

( —p) = —z (p).

The hopping term in Hamiltonian (1) acting on I X) yields

HOIX&= ge'"'e(' —"'"x (p) g [c (r)[ct(r+p)c (r+p)]c,(r+p+r)

+c„(r—r) [c„t(r)c (r)]c (r+p)] I 0). (7)

This state lies in the space of states defined by ([,. . .] denotes anticommutator)

I m n) —geik re (i/2)k Pg ( )3
—(n+m)/2 g . . . g g . . . g c (r )c (r )

gl, I' +m+ ~m-I ~1+ 8 &n+ &n-I &I & P

x —,
' [[ct (r -))c„,(r -))] . . [ct(r)c (r)], [ct (r„'-))c„(r„'-))] [ct(r+p)c .(r+p)]] Io), (8)

where r/=r —P;-) r; and r =Jr +p +P;- i)It is straightf. orward to verify from (6) that I m, n) =
I n, m) The.

operator product on the right-hand side of (8) can be associated with a pair of holes connected to the link (r, r+ p) by

nonretracing paths of length m and n.

Generalizing the single-hole case we introduce operators h2 and hj, [h)t, h j]=0, which add all allowed links at the

ends of the string. Operators h), h2, such that h, h.t =1 (for a =1,2), then annihilate the end links. Also, h, IO, O) =0
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(10,0)—= I Z)). The
I m, n) states can then be represented

as I m, n) = —,
' (h~™hj"+hit"hj ) IX). We have (hi"

+hj) lm, n) = lm, n+1&+ 1m+ 1,n& and (h~+h2) lm,
n) =

I
m —l, n)+ I m, n —1), the latter as long as m,

n&0. The hopping part of the Hamiltonian is represent-
ed symbolically by

H p
= —J3g, (h,t +h, ).

The representation (9) for Hp is only as faithful as the
labeling of configuration space by walks. Problems arise

when the two walks associated with m, n intersect, since
as they are retraced by acting with (1), nontrivial com-
mutator terms are generated. ' (For the Neel ground
state, these anomalous components are orthogonal to the

I m, n) space. ) The h,t are nevertheless a convenient
bookkeeping device for displaying the lattice walk repre-
sentation of our states. They also facilitate the construc-
tion of a rather nontrivial erst quantitized version of (8)
with proper Fermi statistics. Finally, while

I rn, n) states
for n+m =const are not orthogonal, they can be orthog-

!
onalized by diagonalization of the operator h ih j+h2h it.

Proceeding with the calculation, we have

H
I 0,0) = —~3( I 0, »+11,0))+ —,

' J, I 0,0&,

H
I o, n& = —J3(l o n+I&+

I
1 n&+P10, n —1&)+(2+n)J. I

o n&,

H
I m, n) = —J3( I m+ I,n)+ I m, n+1)+

I
m —l, n)+

I m, n —1))+(2+n+m) J, I m, n).

(10)

Only the second line of (10) is nontrivial (P is defined below), since in that case h, can act directly on the "base" link

(r, r+ p). That is,

(hi+h2)10 n) =10 n —1)+ —,
' (h( " ' +hj" ' )M~!1)+ 2 (hr " ' —hj" ' )M-!Z),

where M~ =hihj ~h2hg. More explicitly,

M !Z)=—
—,
' gee'"'e 't ""g [Z ( —p) TX (p)]ct(r+p)c, (r+p)c, (r —~)c (r)10). (12)

r p p

Because of the constraint (6), M-
I Z) =0. Furthermore, when 10) is the Neel ground state, we can evaluate M+ ex-

actly by noticing that the string of annihilation operators is nonvanishing only for a Wo and v~o because of the stag-
gered spin order in 10). Hence v =cr'.

We now fix P in (10) by choosing I to satisfy M+ I I) =(P —1) I X). The eigenstates may be labeled by parity which
then fixes the spin dependence by (6). There are two states with a k-independent eigenvalue P = —, and hence infinite

mass, namely,

and

z '(p)= 0 1

[sin (k~/2), —sin (k~/2), —sin (k„/2), sin (k„/2) ]
, acr'

(13a)

0 1

(p) =
1 0 [cos(k~/2), cos(k~/2), —cos(k„/2), —cos(k„/2)], (13b)

where the label p is arrayed as (x, —x,y, —y). There are two additional states with a finite mass, viz. (suppressing
spin dependence),

and

I'(p ) = [cos(k„/2), cos(k„/2), cos(ky/2), cos(ky/2)], P' = —', [2 —cos (k„/2) —cos (ky/2)] (13c)

X '(p) = [sin(k„/2), —sin(k, /2), sin(k~/2), —sin(k~/2)], P '= —,
' [2 —sin (k„/2) —sin (k~/2)].

By combining the various definitions one verifies that
the transformation k k+(z, z) interchanges I ' with

X, and X ' with X', and thus "singlet" with "triplet. " It
is important to note that the "spin" is a property of the
entire state and that it does not reside on the ends but is
rather associated with the sublattices.

By diagonalizing (10) numerically, we find that within
the BR approximation only the p and d states bind with
an energy ——,

' I, for J,=l which decreases to zero by

! J,=2 x 10 . Hence, the 6(J t ) terms from (4) nearly
cancel and these are the only ones whose sign will not
change when J~ =J, . (Within a Born-Oppenheimer ap-
proach, the time for a hole to run over a walk of length
1-J ' ' is a factor J' shorter than the time, J ', to
flip at least one spin on the walk. ) We are thus uncer-
tain whether the problem of physical interest exhibits
binding. The inverse mass of Z ' from (10) is positive
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and to within 20% varies as J / for 1 & J&0.04 and as J
for 0.04 &J+ 2 x 10

It is instructive to redo the preceding calculation [from
(5) onward] for bosons which reproduces (10) with
P=2. Two bosons do bind with an energy —(1.2-
1.7)J /. The BR approximation, though exact for large
coordination number, includes walks for which the two
holes occupy the same site. We corrected this problem
for bosons by adding a hard core and constructing a vari-
ational wave function which assigned a common ampli-
tude yt(r) to all walks with l links and end-to-end dis-
tance r. ' The binding persisted but with a much small-
er coefficient of J / . The effects of the hard core for fer-
mions should be less pronounced since the antisymmetry
is already present.

The subtle structure of the spin state (8) is nicely il-
lustrated by our repeating the variational calculation for
fermions in a p state with yt(x, y) = —yt(x, —y). '

The binding energy, surprisingly, is strongly negative
and scales roughly as —J'/. It is apparently a very
poor approximation to treat the many-particle wave
function by retaining only the end-to-end vector which
forces a common nodal line in r.

We now summarize our conclusions. First, the
Nagaoka mechanism and ferromagnetic polarons are
only important for J/w very small, i.e., &5X10 . The
observation of antiferromagnetism argues in favor of
Jw ~ 1 and thus the BR picture of "band"-narrowing
effects may be appropriate. In this range, the kinetic en-

ergy of holes can be evaluated by use of the string repre-
sentation of the configuration space. First-quantized
spin and space wave functions do not factorize. Also,
surprisingly, the mass of a pair state may be infinite.

Finally, as yet we do not have a conclusion concerning
superconductivity in the Hubbard model since only two
holes were considered and the binding that we find is of
the same order as J& exchange which was not included.
The latter will introduce coupling between pairs and un-
paired fermions, but can be considered perturbatively.
On the other hand, the string states as defined in Eq. (8)
can be generalized to many particles.
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