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Dynamics of Dilute Magnets above T,
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Nonperturbative contributions are shown to produce anomalously slow relaxation in dilute ferromag-
nets (or antiferromagnets), in both the paramagnetic and "Griffiths" phases. In the paramagnetic phase,
the pseudoscaling form C(t)-exp[ —tdtt"+'~f(t/g~d+')j is predicted for the spin autocorrelation func-

tion, with (~ the correlation length of the nondi lute system. In the Griffiths phase, C(t )
-exp[ —(8 Int)dttd '~j and exp[ —(Bt) 't j are predicted for Ising and Heisenberg systems, respective-

ly, for t » (t, +'.

PACS nnmbers: 75.40.6b, 64.60.Fr, 75.10.Hk

There has been recent interest ' in the effects of
Griffiths singularities on the dynamics of random mag-
netic systems. In this Letter, the dynamics of dilute
magnetic systems above the critical point are discussed,
both in the paramagnetic phase T~ TG, where the
"Griffiths temperature" TG is the critical temperature of
the pure (i.e., nondilute) system, and in the "Griffiths
phase" T, & T & TG. Simple, intuitive ideas are em-

ployed, based on the existence of large, rare, quasior-
dered regions which relax very slowly. I find that the
conventional picture, based on perturbative renor-
malization-group treatments near T„ is inadequate in

random systems. Instead I predict, independent of the
details of the dynamics, a form of "critical slowing
down" for T TG+, with a nonexponential decay at
TG of the form C(t)-exp[ —t ' j, where C(t) is

d/(d+z )

the spin autocorrelation function, d is the spatial dimen-

sion, and z~ is the dynamic critical exponent of the pure
system. Away from To, C(t) has for large t and small

~
T —To ~/TG a scaling form,

C(t)-exp[ t "f(t/—g~ ")j,
with g~ the pure-system correlation length. Note the un-

conventional form of the scaling variable, involving the
exponent d+zp instead of simply z~ as in conventional

dynamic scaling. For T, ( T & TG, the relaxation is

even slower than at TG. Specializing to "model A"
dynamics (i.e., no conservation laws) I find, for t

lnC(t) ——A(lnt) t I ') for Ising systems
and InC(t) ——(Bt) 't for Heisenberg systems. The
amplitudes 8 and B diverge for T Tg —,while B van-

ishes for T T;+.
For simplicity we will consider a dilute ferromagnet,

with Hamiltonian

H = —QJ;,S;.Sj.
(ij )

The spins [S;j are n-dimensional vectors. For bond dilu-

tion the nearest-neighbor interactions [J;Jj are indepen-
dent random variables taking the values J and 0 with

probabilities p and 1 —p, respectively. For site dilution,

J;1 =Jc;ct, where c; 1 or 0 with probabilities p and
I —p, respectively. The spin autocorrelation function is
C(t) =[(S;(t) S;(0))],where ( ) and [ ] indicate
thermal and disorder averages, respectively.

The physical origin of anomalously slow relaxation in

the dilute system is the presence, with nonzero probabili-
ty per site, of arbitrarily large regions (clusters) which
have a higher fraction of occupied bonds (or sites) than
the system as a whole. These regions need not be, and in

general will not be, isolated from the rest of the system.
The basic assumption underlying the calculations is that
the long-time dynamics is dominated by clusters of a
particular shape, size, and mean concentration of occu-
pied bonds or sites. These can be determined variation-
ally to maximize C(t). In a more formal theory, the
"critical cluster" for a particular time t would presum-
ably emerge as an "instanton solution" in an appropriate
field-theoretic description. In the absence of such a
rigorous theory, we will assume that the instanton would
have spherical symmetry, i.e., that compact clusters
dominate at long times. The size L, and the mean con-
centration p' ()p) of occupied bonds or sites which
characterize the optimal clusters, will be determined
variationally (i.e., by saddle-point methods). For
T & To clusters with p' such that T, (p') )T dominate
the long-time dynamics, since they correspond to regions
of "local order" whose temporal persistence is limited
only by finite-size effects. For T) TG, clusters with
p'=I (i.e., clusters of fully occupied bonds or sites)
dominate. The generic form for C(t) within this ap-
proach is

C(t) = g P(L,p')exp[ —t/z(L, p') j,
L,p'

where P(L,p') is the probability that a given site belongs
to a (compact) cluster of size L and mean concentration
p', and z(L,p') is the corresponding relaxation time.
The temperature regimes T» To and T, (p) & T & TG
will be discussed separately.

(I) T ~ To.—For this case clusters with p'= I dom-
inate, since they are most nearly critical. The cluster
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probability is

P(L, 1)-p =exp[ —cL j, c =ln(1/p),

while the relaxation time r(L, 1) is given by.(I., i) =g,'f(L/g, ) (3)

where oL ' is the interface free energy, the factor 1/T
expected in the Arrhenius form (9) has been absorbed
into the surface tension o, and r~ is the characteristic re-
laxation time in the ordered phase of the pure system.
Putting (2) and (9) into (1), with p' set equal to 1,
yields

L»g~,

-L ', L«(p.

(4)

(5)

In particular, Eq. (8) describes the dynamics at T=TG,
when g~ =~.

The above results apply to both Ising and vector
(n~ 2) spin systems, for general dynamics —the value
of n and the details of the dynamics only affect the value
of the pure-system dynamical exponent z~ appearing in

the general expressions.
(2) T, (p) (T & TG.—In this regime the results de-

pend on both the nature of the spins (Ising or Heisen-
berg) and the details of the dynamics. The latter we will

take to be described by "model A,
" i.e., we assume no

conservation laws. The Ising and Heisenberg models
will be separately discussed.

Ising systems: Again we find that p' =1 dominates at
long times. This is because the relaxation time z(L,p'),
which favors larger p', is exponentially sensitive in L (see
below) to changes in p', while the "entropic term"
lnP(L, p'), which favors smaller p', is only algebraically
sensitive to L. To estimate z we note that the cluster re-
laxation is limited by the time taken for coherent rever-
sals of the entire cluster. Since such a reversal requires
creating, at an intermediate state, an interface separat-
ing regions of opposing magnetization, we have

In Eq. (2), an algebraic prefactor has been dropped since
it leads to only a power-law prefactor in C(t). Other
contributions to the latter prefactor come from correc-
tions to the saddle-point evaluations of the sums on L
and p', and (presumably) from fluctuations around the
assumed spherical form for the dominant clusters. All
such contributions are systematically neglected in what
follows: We compute only the leading exponential factor
in C(t).

Substituting (2) and (3) into (1) and determining L
variationally yields the scaling form

(6)

with g(x) a scaling function. For t/g~ "&&1, the dom-
inant clusters have L -g~, and

lnC(t )——c(~~ t/g,"—, (7)

consistent with (6). In the opposite limit, Eq. (5) is re-
quired, and one obtains

(8)

C(t) -gt. exp[ cL —(t/r—p)e j.

For t , the sum is dominated by values of L near
that which maximizes the summand. This gives

j(1/~)ln(t d/(d-l)/ )j )/(d —)) (io)

and

lnC(t) ——{(I/~)ln(ter / ')/z )j d/(d

Of particular interest is the limit T TG —.In this re-

gime, o —g~
( ') and rz-g~", giving L-(~in(t /g ~ ')

and

lnC(t) ——
g jln(t/g ")jd/(d (i2)

.(L,p') —.,(p') k/g, (p')) d.

Finally, the probability that a cluster of N=—L bonds
(or sites) contains Np' nonzero bonds (or sites) is

Note that (12) is consistent with the general scaling
form (6).

Somewhat surprisingly, Eq. (12) contains no hint of
the onset of long-range order at T, (p). Therefore it is
not part of the dynamic scaling form that describes the
dynamics near T, (p). This is a consequence of the fact
that concentrated clusters (p

' = 1) dominate for all
T & T, (p). '

Heisenberg systems: For n ~ 2, the relaxation times
r(L,p') is much shorter than for Ising spins, since there
is no free-energy barrier hindering relaxation. Rather,
relaxation occurs by "diffusion of the order parameter"
over the surface of an n-dimensional sphere, driven by
the thermal noise. The change in the cluster magnetiza-
tion M due to the thermal noise acting in one "time
step" is BM-L", since the noise on different spins
adds incoherently. After t time steps one has 8M(t)
-L t ' . Complete relaxation has occurred when
BM -M -L, giving r -L . To make this more precise,
we recognize that the basic time step is the relaxation
time r, (p') of a bulk dilute system with concentration
p', and that the length L should be measured in units of
the correlation length (,(p') of the bulk dilute system.
%ith these refinements we obtain

r(L„,1)-z,explaLd 'j, (9) p(L pi)r(N )pNp (1 p) (1 Np')

721



VOLUME 60, NUMBER 8 PHYSICAL REVIEW LETTERS 22 FEBRUARY 1988

giving

lnP(L, p') = —L [p' in(p'/p)+(I —p')in[(1 —p')/(1 —p)l]—: L—f(p'), (i4)

up to subextensive corrections.
Putting (13) and (14) into (1), and evaluating the

sums by steepest descents, yields

inC(i) ——(ar ) '",

8 =min&„(p ') df (p ')/r, (p ').

(is)

(i6)

Equation (15) agrees with the form previously derived in

the n ~ limit.
Of particular interest are the limits T TG —and

T T, (p)+. For T To —,we must have p' 1 to
ensure T & T, (p'). In this limit, f(p') c, g, (p')

g~, and r, (p') rz-gz'. Inserting these into (16)
yields 8-g~ "and

lnC(t) ——(rgb ")'i', r»&p'", (i7)

8-min
(p' —p, )

—(p, —p)" ""'

(7 7 ) P

where a, is the specific-heat exponent of the random sys-
tem, and the hyperscaling relation a, =2 —dv, has been
used. Hence (15) becomes, for T T, (p),

consistent with the general scaling form (6).
For T T, (p)+, optimization with respect to p' is

nontrivial. Since p is close to (but less than) p, (T) [the
inverse function of T, (p)], we anticipate (and verify a
posteriori) that p' will also be close to (but greater than)

p, (T). For p' —p small, f(p') —(p' —p) . Also r,
and g, —(p' —p, ) "in this regime, where z, and v, are
the dynamical and correlation length exponents, respec-
tively, for the random system. Inserting these forms into
(16) yields

The above results for C(t) can be extended' to the
more general correlation function C(r, t) = [(S;(t)
S~(0))] with r=

~
r; —rj ~. For times long enough that

the length scale L(t) of the dominant spherical clusters
satisfies L(t) »r, the spins at sites i and j will move to-
gether during coherent reversals (or rotations) of the
cluster. Thus C(r, t) will behave like C(t), i.e., it will be
essentially independent of r for L(t)»r. On longer
length scales, elongated clusters, with length of order r
and width L(t) & r, will dominate, ' and C(r, t) will de-
crease rapidly with r. Results for this regime, and for
the crossover between the two regimes, will be presented
elsewhere. '

In summary, the dynamics of dilute magnets exhibit
nonexponential relaxation for all T ~ TG, i.e., above the
critical temperature T, (p) which signals the onset of
magnetic long-range order. Near TG I predict a novel
form of dynamic scaling, involving the scaling variable

t/g~ ". The weakest link in the argument is the as-
sumption that clusters of a particular shape, i.e., close to
spherical, dominate the dynamics at long times. For Is-
ing systems in the Griffiths phase this is physically plau-
sible since, for clusters of a given volume, the compact
clusters are those with the longest relaxation times. For
Heisenberg systems the result is less obvious and requires
further justification. It is hoped that this will emerge
from a steepest-descent calculation, valid for large t, in a
more formal theory.

Finally, I note that while the results presented here
have been derived specifically for dilute magnets, the
Griffiths phase is a more general concept s and the re-
sults can be extended, with only minor modifications, '

to general random magnets.
Stimulating discussions with A. D. Bruce, D. S. Fish-

er, B. I. Halperin, D. A. Huse, A. J. McKane, M. A.
Moore, P. W. Mitchell, G. J. Rodgers, D. J. Wallace,
and P.-Z. Wong are gratefully acknowledged.

lnC(t) ——[(T—T, ) "(t/g,")]'i'.

It is interesting to note that, as was found for Ising
spins, this nonperturbative contribution to C(t) due to
Griffiths singularities is not part of the scaling form near
T, (p): For r ee, (,~ ee, with t/(," fixed, the nonper-
turbative contribution (18) decreases as the exponential
of a power with increasing t (since' a, &0), whereas
standard dynamic scaling predicts a power-law depen-
dence on t in this regime. " Nevertheless, for t ~ as
fixed T & T, (p), the nonperturbative contribution (18)
eventually dominates (for t»(," ""'), since conven-
tional critical dynamics implies 1nC(t) — t/r, in this—
regime.
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