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Anisotropic Surface Tension, Step Free Energy, and Interfacial Roughening
in the Three-Dimensional Ising Model
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The anisotropic interfacial tension of a simple-cubic Ising model is calculated for the first time by use
of extensive Monte Carlo studies with a tilted interface for a wide range of lattice size L and tempera-
ture T. The size dependence of the step free energy is used to probe the correlation length near the
roughening transition and confirms the expected square-root T dependence. Finite-size scaling implies
that the step free energy varies as 1/L in the rough phase, and thus the applicability of a capillary-wave
Hamiltonian to describe interfaces of lattice models may be limited.

PACS numbers: 68.10.Cr, 05.50.+q, 68.35.Md

Surface and interfacial phenomena are ubiquitous and
constitute a topic of current interest to many research
fields, ranging from phenomena such as nucleation, wet-

ting, crystal-faceting transitions to lattice gauge theory.
Below an ordering-phase transition, different phases can
coexist and the nature of the coexistence is governed by
the thermodynamic properties of the interface. For
many systems such as crystalline solids and theoretical
lattice models, orientation of the interface, i.e., anisotro-

py of the interfacial excess free energy, is relevant. For
bulk dimensions larger than two, the interface separat-
ing ordered domains undergoes a finite temperature
roughening phase transition, from a smooth to a rough
interface whose width diverges. The excess free energy
of forming a single step on an otherwise flat interface
also vanishes at the transition. This effect is responsible
for the vanishing of facets in crystal-facet transition.
Properties of the rough interface also enter in the discus-
sion of wetting, where one of two phases preferentially
wets a substrate or a third phase. Although these and
similar physical phenotnena have been studied extensive-

ly by both experiments and theories, a detailed calcula-
tion of the anisotropic interfacial tension in a realistic
model in three dimensions is absent. We report here a
very large-scale Monte Carlo study of a simple-cubic Is-
ing model with a tilted interface for a wide range of lat-
tice sizes, temperatures, and tilt angles. The anisotropic
interfacial tensions are obtained and finite-size depen-
dence of the step free energy is used to probe the temper-
ature dependence of the correlation length near the
roughening transition. Our analysis yields the roughen-
ing temperature in agreement with previous estimates
based on other methods, and demonstrates the predicted
square-root temperature dependence of the correlation
length for the first time. We also point out implications

of the step-free-energy finite-size scaling which may
significantly affect the application of capillary-wave
Hamiltonian approximations to wetting phenomena in

lattice models.
The excess interfacial free energy is the free-energy

difference between two systems with and without an in-
terface, and when normalized by the cross-sectional area,
it yields the related interfacial tension z. For systems
lacking full rotational symmetry such as lattice models,
an anisotropic interfacial tension i(8, T) is introduced to
describe interfaces at an angle of 8 with respect to a
given symmetry direction. We consider here the Ising
model with an interface at temperatures T below the
critical T,. At T=O, the interface is flat and with in-

creasing T excitations of step formation appear with
probability determined by the related excess step free en-

ergy per unit length f, (T). At T=Ttt, a roughening
transition occurs at which f, (T) vanishes. The prolifer-
ation of steps then leads to the divergence of the inter-
face width. This is also the mechanism for the dis-
appearance of crystal facets at the facet transition.
z(8, T) enters via the Wulff construction in determining
the crystal shape. Note that f, is simply the limiting in-
terfacial tension due to an infinitesimally small 8,
i.e., f,—Bz(8, T)/88(e-o which thus also vanishes for
T Tg.

Except for T =0, f, (T) and z(8, T) are not known for
the three-dimensional Ising model. In contrast, more is
known about the roughening transitions through analyti-
cal and numerical studies of various solid-on-solid (SOS)
models of interfaces (which neglect overhangs and bub-
bles). Exact solution and duality transformation pre-
dict that these transitions are of the Kosterlitz-Thouless
type with an infinite-order transition and infinite corre-
lation length in the rough phase. Numerical evidence
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f, (r)-c&(r) ' for r &0, (2)

while g(t) =~ and f, (t) =0, for t (0. Invoking these
relations for the Ising model, we probe the temperature
dependence of g(t ) by calculating f, (t ) only. We then
avoid the need to define the location of the Ising inter-
face and subsequent measurement of the height-height
correlation function.

For temperature (T = T/T, ) below T, (J/kaT,
=0.221655"), we considered L x L x L simple-cubic lat-
tices under two sets of boundary conditions to simulate
systems with and without a tilted interface. By imposing
antiperiodic boundary conditions (APBCs) in the z
direction, periodic boundary conditions (PBCs) in the y
direction, and a screw boundary condition in the x direc-
tion with a shift of Na lattice constants, a tilted interface
with the angle of 8 tan '(Ns/L) with respect to the xy
plane is obtained. By comparing the energy of this sys-
tem to that of an identical system, but replacing the
APBC by a PBC, we obtain the excess interfacial ener-

AU, „(8,T,L) =UApa(:(8, T,L) —Upac(8, T*,L).
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from Monte Carlo simulations of the interface width
and other numerical results ' for the Ising model are
consistent with the predictions based on the SOS model
and universality. In the SOS models, f, (T) is predicted
to be related to the correlation length ((t) for the
height-height correlation function

g(r)-aexp(~r '"), r =(I T/—V;),
and

Standard thermodynamic integration (with d, T*=0.01
or 0.02)' starting from T* =0 yields r(8, T*,L). An
ultrafast multispin vectorized code' implemented on the
Cyber 205 is used with speeds up to =30X10 updates/s
allowing us to study L as large as 96 using =10 Monte
Carlo steps per datum point. The finite-size scaling'
prediction for the step free energy on a finite lattice
f, (L, t) is

f, (L, t) =c( I(r)X(L/((r)), (3)

where c is some positive constant. X(L/((t) ) is the scal-
ing function with the appropriate limits of X(~) =1 and

X(L/( 0)—(/L In a. finite system f, (L,t) is nonzero
and vanishes only as L ' at T~ TR. As noted above,
this implies that r'=Br/88

~
s-o does not vanish and also

scales as L '. For larger 8, one expects little finite-size
dependence and rapid convergence towards the thermo-
dynamic limit.

In Fig. 1, we present results for r(8, T,L =32) for a
wide range of 8 and T . The surface tension shows clear
anisotropy. For very low temperature, there is pro-
nounced curvature indicating that the second or higher
derivatives of z with respect to 8 are substantial. A rap-
id decrease of the slope near 0=0 with increasing T* is
evident and the curvature also decreases in the vicinity of
Tlt =0.54. For larger angles, the convergence with in-

creasing size is very rapid as indicated by 8 =29.3 ',
where the estimates for L =64 are already indistinguish-
able from L 32 within the estimated errors of about
2%.

f, (L,t) is shown in Fig. 2 as a function of T*. The
estimated error is 0.01 for L =16 and increases to 0.06
for L 96 near the transition. To apply finite-size scal-
ing [Eq. (3)] we need the temperature dependence of
g(t). To this end, we extrapolate f, (L,t) to L ~ by
assuming an L ' dependence [Fig. 3(a)l. Using the ex-
trapolated value of f, (~,t) together with Eq. (2), we
test the predicted behavior of g(t) by plotting [Fig. 3(b)l
Inf, (~,t) vs Jt with different trial values for TR. A
good linear fit is obtained for TIt 0.54~0.02, con-
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FIG. l. Angle dependence of the (anisotropic) interfacial
tension in units of J/kaT, . The reduced temperature T*-T/T, .

FIG. 2. Temperature dependence of the step free energy
f, (L,T) in units of J/kaT,
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FIG. 4. Finite-size scaling plots of step free energy. See
text.
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sistent with previous estimates of 0.56+ 0.03 thus
confirming the square-root dependence in Eq. (1). The
fit gives A = 1.36 ~ 0.06 and 8 =9.84 ~ 2.0 for g(t ) [Eq.
(1)]. Using these results for g(t), we check finite-size
scaling [Eq. (3)] by plotting [f,(L,t)g(t)] —1 vs L/g(t)
(Fig. 4). The data indeed scale quite well.

For a discussion of capillary waves, the higher deriva-
tives of r(H, T*,L) with respect to the angle 8 are impor-
tant. ' We consider

z(H, T*,L) =r(O, T*,L)+ '(O, T*,L) i Hi

+ —, r (0,T*,L )8 . (4)

We ignore higher-order terms and find that r" is nega-
tive for low T* but, for large L, crosses to positive values
near TR. This behavior is consistent with the mechani-
cal stability requirement by the interface. Further dis-

FIG. 3. (a) Size dependence of the step free energy f, (L,T)
in units of J/k&T, . (b) Log of step free energy per unit length
of steps vs Kt for t =1 —T /TR with diFerent trial values of
Tg. The solid line is the best linear fit obtained.

cussion and results will be presented elsewhere.
In conclusion, our detailed and accurate results for the

anisotropic surface tension r(H, T,L) and step free en-

ergy f, (L, t ) for the Ising model are consistent with pre-
dictions based on the theory of roughening transitions.
Our results have important implications for numerous
applications, e.g., critical wetting for which recent simu-
lations' are inconsistent with a renormalization-group
calculation based on a capillary-wave Hamiltonian. '

This model is essentially a continuous Gaussian SOS
model in which the coupling constant v is related to the
coarse-grained anisotropic interfacial tension of the Ising
interface. ' For example, in two-dimensional systems
above TR (Tg =0 in d=2), r'=0 and a= , r(Os, T )
+ r,'s(O, T ), with the assumption that Eq. (4) holds for
r,s(H, T*). One then defines r,s(H, T ) by integrating
over short wavelength fluctuations up to a length scale,
which is at least of the order of the bulk correlation
length gb For d =3 t. he expression for cr is more compli-
cated (two angles are needed to describe arbitrary inter-
face orientation), but terms in r' are still absent. Since
we expect that the L dependences of r,s(H, T*) and
r(8, T ) are qualitatively similar, our results indicate r,'s
scales as L and r,"s is positive definite (but finite) in

the rough phase. For critical wetting, the long wave-
length excitations are important and 8 is of order of
L . This implies that for any finite L, the linear term
cannot be neglected and may be comparable to the quad-
ratic term. The use of the capillary-wave Hamiltonian is
thus a questionable approximation, except when very
near T, where gb ~ and T is isotropic. We hope that
our work will stimulate research to clarify these effects
of anisotropy on the application of capillary-wave Ham-
iltonians.
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