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The stability of Taylor-Couette flow is studied as a function of the angular velocities of the inner and
outer cylinders, Q~ and 02=eh&cos(tot), respectively. Contrary to the theoretical prediction, outer-
cylinder modulation stabilizes the flow. The critical Reynolds number, Rei„ is a function of the dimen-
sionless frequency, y (rod /2v) 't, where d is the gap size and v is the kinematic viscosity, and a mono-
tonically increasing function of t. over the range examined: 0.3=a=2.0. At larger e stabilization is
spectacular, ReI, reaching a value nearly double the value for stationary outer cylinder.

PACS numbers: 47. 15.Gf, 47.25.Ae

The hydrodynamic stability of fluids between corotat-
ing and counterrotating cylinders has been receiving in-
creasing attention during the past few years. ' In addi-
tion, interest in the problem of external modulation in a
variety of geometries and with various driving forces
continues to increase. Examples include modulated Tay-
lor-Couette flow, s modulated Benard convection, '

and transversely modulated cylinders ' as well as gen-
eral unsteady flows. "'

We report the first study of corotation and counterro-
tation with modulation in a Taylor-Couette apparatus.
We have used an apparatus with the inner cylinder rotat-
ing at a constant angular velocity, Q~, and the outer
cylinder oscillating about zero mean rotation: Q2 = e 0&
xcos(rot). For consistency with the theory ' of Carmi
and Tustaniwskyj we define an inner-cylinder Reynolds
number as Re~ =(A~R~d/v)(d/R~)'i where R~ is the
inner cylinder radius, d =R2 —8 ~ where R2 is the outer
cylinder radius, and v is the kinematic viscosity. ' Our
results differ qualitatively from the theoretical predic-
tions of Carmi and Tustaniwskyj in that, contrary to
their findings, modulation of the outer cylinder was
found experimentally to delay the onset of secondary
flow beyond the inner-cylinder critical Reynolds number
for a stationary outer cylinder, Re~, . The critical
inner-cylinder Reynolds number for this modulation ex-
periment, Re~„was found to be a function of both e and
the dimensionless frequency of modulation, y=(rod /
2v) 't'

A detailed description of the apparatus, fluid sample,
detection method, checks on the functioning of the ap-
paratus, experimental protocol, and contributions to er-
ror has been published. We describe here a few
changes, which were made for this experiment. In the
current experiment the inner cylinder was driven by a
Compumotor model M57-51E motor and a Compumotor
2100 series indexer. A Hewlett-Packard model 3325A
synthesizer/function generator provided a sinusoidal volt-

age to a voltage-controlled oscillator, which drove a Su-
perior Electric stepping motor that was connected to the
outer cylinder. The entire apparatus was kept in a

temperature-controlled room. There was a temperature
drift in the room of no more than 0.1'C/h, and runs
took from 2 to 5 h. A number of measurements were
made over a range of Ret from below to above Ret, . Ret
was slowly increased between measurements; and, after a
predetermined value was reached, the measurements
were repeated with Ret being slowly decreased between
measurements. The temperature was checked before
every measurement, and the value which was used to
determined y (through its effect on the viscosity) was the
value at Ret, . If there was a drift in temperature be-
tween Re~, during the up ramp and Ret, during the
down ramp, the average was used for our results. This
temperature drift resulted in a drift in y, which was typi-
cally about 0.1% and was never more than 1% of y.

There was a distortion in the modulation waveform,
because the response of the voltage-controlled oscillator
was not directly proportional to the output of the
synthesizer/function generator. This response, ideally a
constant in terms of radians per second per volt as a
function of voltage input to the voltage-controlled oscil-
lator, was linear over much of the voltage output range
of the function generator, having a slope of about 3%.
As the output of the function generator approached 0 V,
however, this response dropped to zero. The fraction of
a modulation period spent in this dropoff region was nev-
er more than 5 at Re~, . The amplitude of the outer-
cylinder angular velocity, eQ~, was accurate to better
than 0.04%, and the angular velocity of the inner
cylinder, which was used to determine Re&, was checked
with an optical encoder, the results agreeing with the
value set by the computer to within 0.03%. Finally,
there was a small drift of the outer cylinder, which was
reduced to at most 0.25% of the angular velocity of the
inner cylinder before every measurement.

The power limit of the stepping motor, together with
the moment of inertia of the outer cylinder, placed limits
on t. and co, since the amplitude of outer-cylinder angular
acceleration was Q~t. m. It was, for example, not possible
to go to a high enough Re& to achieve secondary flow
with to=2.20 rad/sec and e=0.5 for the radius ratio
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FIG. 1. Critical Reynolds number, Re&„as a function of the
dimensionless modulation frequency, y, for t.' 0.5, g 0.88
(filled lozenges) and tl 0.95 (open lozenges). As a visual aid
a curve connects the data for g 0.88. Horizontal lines on the
right-hand side of the graph indicate critical Reynolds numbers
for no modulation, Ref, ~, for each value of q (see text).

FIG. 2. Re&, as a function of y for tl 0.719 (plusses) and
0.88 (squares) with e 1.5, and for y=2.3, rl 0.88 with
several different e (crosses). As a visual aid solid curves con-
nect the data for g 0.719 and the data for g 0.88 with
e=1.5. A dashed vertical line connects the data for y=2.3.
Horizontal lines on the sides of the graph indicate Ref, ~ (see
text).

ri =R &/Rz =0.95; hence y was kept to no more than 0.81
in this case.

Conversely, at low y the transition region of transient
secondary flow broadened, and it became increasingly
difficult to determine exactly where secondary flow first
appeared. This is because at high y, modulation has lit-
tle effect on the bulk of the fluid, the disturbance being
confined to a region close to the outer cylinder. As a re-
sult Taylor vortices remain after first appearing at some
Re~ just as they do in the absence of modulation. With
low y, however, vortices are transient at and just above
Re~„appearing and disappearing during each modula-
tion cycle while Qz=O. As Re~ is increased, vortices are
present for a greater part of the modulation cycle. In
this case the response of our detection system is spread
over a range of Re~. We broaden our error bars accord-
ingly, but because of this phenomenon we report, for ex-
ample, no data for ri =0.719 with y & 3.39. The greatest
versatility was found with ri =0.88.

Runs were made with three different radius ratios,
r1=0.719, 0.88, and 0.95, with Rz=2.54 cm. For each
radius ratio a run was made with the outer cylinder sta-
tionary. For t1=0.95 and I =170.87 (I =L/d where L is
the height of the annulus) runs were made with a=0.5
for a range of y. For @=0.88 and I =67.91 runs were
made with t. =0.5 and 1.5 each with a range of y, and
with y=2.30 for a range of t. . For q =0.719 and
I =31.93 runs were made with a =1.5 for a range of y.

To test the influence of end effects, runs were also
made with g =0.88, m=0. 5, and y=2.30 for three aspect
ratios (I =59.38, 67.91, and 69.23), and with I =66.60
for various positions of the optical detector. Except for
runs testing the influence of end effects by movement of
the optical detector, the detector was kept at the middle

of the annulus. Re~, was independent of I for the aspect
ratios that were tested, and end effects were apparent
only when the detector was moved more than 75% of the
way from the middle to the end of the annulus in which
case the detected Re~, lowered as the detector was
placed closer to the end cap.

In Figs. 1 and 2 Re~, is plotted as a function of y.
Figure 1 shows our results for @=0.5, and rl =0.88 and
0.95. The solid lines on the right side of the graph give
the experimentally measured critical Reynolds numbers
for no modulation, Re(o)(ri=0.88) 44.46~0.49 and
Re(, )(t) =0.95) 43.02 ~ 0.51. We see that for the
values of y for which measurements were taken, the
amount of stabilization is roughly independent of ri,
since the data for a given y shifts with Ret, . In Fig. 2
we compare the results for r1=0.179 to results for

g =0.88, both with t. 1.5. This figure also gives results
for ri =0.88, ro=z rad/sec (y=2.3), for a variety of e.
These values of e are, in order of increasing Re~„0.3,
0.5, 0.7, 0.9, 1.5, and 2.0. The strong dependence of
Re~, on c is quite apparent; Re~, increases monotonically
with e for the range examined. Note that because of
temperature (and, consequently, viscosity) variations
from run to run y varied slightly, 2.29 ~ y~2.33, while
co was constant. Again the horizontal lines give Re~, ,
Re, (ri =0.719)=51.37+'0.66.

We define the stabilization d, =(Re~, —ReI~o))/Rej~~o)

and plot it in Fig. 3 as a function of y for all data with
t. =0.5 and 1.5. We see that for a given t. the value of h,

is nearly independent of g. When our results were first
examined it was expected that this scaling would place
all the data for g =0.95 and 0.88 with a =0.5 on a single
line. As this plot demonstrates, however, for the error
bars on these data to overlap the uncertainty in Re&,
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FIG. 3. Scaled experimental data: 6 (Rei, —Rel~, )/Rel~,

as a function of y for e 0.5, rl 0.88 (filled lozenges) and 0.95
(open lozenges); and for e 1.5, ri-0.719 (plusses) and 0.88
(open squares). To show the effect of scaling, and as an aid to
the eye, a single curve connects all the data for e 1.5. Anoth-
er curve connects the data for e 0.5 with g 0.88. Also
shown are values of 6 for Carmi and Tustaniwskyj's stability
limits with e-0.5 and |1-0.693: linear (crosses) and strong-

energy (filled squares). As an aid to the eye both of these sets
are connected by a curve.

would have to be about 1% greater. We also include in

this figure the values of 5 for Carmi and Tustaniwskyj's
strong-energy and linear-stability limits. The experi-
mental 6 s are always positive, implying stabilization,
while the theoretical 6's are always negative, implying
destabilization.

One unplotted data point was taken visually at low y
because of the limitations on our system described above.
With ri=0.88, a=1.5, Rel 44.46, and y=0.66 tran-
sient vortices were found to appear very near Qz=0.
They were very weak and vanished with corotation and
counterrotation. Our results show, therefore, a h which
is near zero at small y, increases to a broad peak be-
tween y= 1 and 3.5 and then drops off again to near zero
at higher y. It is interesting that the range of y over
which modulation has its greatest effect, i.e., where i d i

is the largest, is roughly the same for both theory and ex-
periment.

We interpret our results in the following way. At low

y transient secondary flow is possible if 02 is close to
zero for long enough provided Rei ~Rei, . The secon-
dary flow, which would appear in unmodulated flow, ap-
pears in the nearly steady flow. At this value of y the
viscous wave in the gap has little phase difference across
the gap and the pressure and centrifugal fields are nearly
the same as those which allow a bifurcation in steady
flow.

At intermediate values of y, where 5 is largest, the
pressure and centrifugal fields are quite different from
those which exist with constant Qi and Qz=0. There is

Re2
FIG. 4. Taylor's values for constant 0& and 02. corotation

(triangles) and counterrotation (circles) (see text), and data
for rl 0.88, y=2. 3 with several e (crosses). Increasing values
of Re2 correspond to increasing values of e. A curve connects
Taylor's values for counterrotation.

a phase difference in the viscous wave across the gap,
and while Qz=0 the flow field in much of the gap is still
influenced by the previous relative motion (corotation
and counterrotation) of the two cylinders. For a range
of Rel that is greater than ReI, much of the field resem-
bles conditions in which azimuthal flow is stable, and
secondary flow cannot develop.

At high y the Stokes-layer thickness, B=(2v/ro) 'iz, is

much less than d and the effect of modulation is confined
to a region near the outer cylinder. The flow field of the
bulk of the fluid approaches that for constant II |with

02 0 as y ee. At higher and lower values of y than
we examined, we therefore expect to determine experi-
mentally a 6 which asymptotically approaches zero. We
note, however, that in general the stability of modulated
hydrodynamic systems in the low-frequency limit re-
mains an unresolved theoretical problem ' which, per-
haps, deserves further consideration.

We have observed an interesting scaling relationship
holding for the region of optimum stabilization 1(y(3.5. If we define the outer-cylinder angular velocity
( i Qzi) as the arithmetic mean of the magnitude of 02
over one modulation cycle, then an outer-cylinder Rey-
nolds number Rez (( i Qz i )Rzd/v)(d/Rz) ' can be
adopted. Because of the distortion in modulation
waveform discussed above, this average must be deter-
mined numerically. In Fig. 4 we plot Re&, against Re2
for ov.: ~~a'a vith @=0.88 and y=2.3. These values are
compared to the critical values found experimentally by
Taylor' with g =0.88 for corotation and counterrotation
(in order to place all data on the same side of the vertical
axis we have used the absolute values of Taylor's values
of Qz for counterrotation). The data from our experi-
ment falls on the same curve as Taylor's data for coun-
terrotation with the exception of one point. We con-
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elude, therefore, that in the region of optimum stabiliza-
tion, 1 & y& 3.5, the effect of the modulation of the
outer cylinder is dynamically equivalent to a steady
counter rotation of the outer cylinder of magnitude
(in, i&.

We note that our system preferentially detects secon-
dary flow near the outer cylinder. It is quite possible
that, because of the presence of the viscous wave in the
gap, there are at any moment regions in which secondary
flow can begin to grow and regions in which it decays
when Re~ =Re~, . We expect that the results of further
theoretical work on this problem may show a stabiliza-
tion which is somewhat smaller than ours, since theory
may report an Re~, at which secondary flow can develop
anywhere in the gap and for any length of time, rather
than an Re~, at which enough of the flow is unstable that
secondary flow can be detected at the outer cylinder.
Specifically, since modulation of the outer cylinder stabi-
lizes the flow, the flow near the inner cylinder should be-
come unstable at a lower Re~ than that at which the flow

near the outer cylinder becomes unstable —the ampli-
tude of the viscous wave being greatest near the outer
cylinder and zero, because of the no-slip boundary condi-
tion, at the inner cylinder. It would be interesting to
study the amplitude of local fluctuations with use of laser
Doppler velocimetry.

We conclude that the theory underlying our present
experiment merits reexamination. Related experiments
for which theory exists, 4 such as modulation of the
outer cylinder about zero mean with the inner cylinder
stationary, and mean rotation of the inner cylinder with
a superimposed modulation combined with either an in-

phase or 180' out-of-phase modulation about zero mean
of the outer cylinder, should be tried as a rigorous check
on existing and future theoretical work.
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