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Interacting Superstrings at Finite Temperature
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A real-time finite-temperature formalism for interacting superstrings is described. It is used to com-
pute the tree amplitude for open superstrings at finite temperature.

PACS numbers: 11.17.+y

Superstring theory! is the only known example of a re-
normalizable quantum theory of gravity. Therefore un-
derstanding its role in the early Universe is crucial. An
important aspect in this problem is to understand the
finite-temperature effects of superstrings.

Recently a real-time finite-temperature formalism for
the bosonic string has been constructed.>® Using it, the
finite-temperature Veneziano amplitude and the one-loop
string amplitude have been calculated.

The basic idea of the real-time finite-temperature for-
malism [thermo field dynamics (TFD)] is to construct a
thermal vacuum |0(B)) such that the statistical average
(A4) of a dynamical variable A can be expressed in the
form

(A)=tr(de ~PH)/tr(e “PH) =(0(B) | 4]0(B)). (1)

To construct |0(8)) it has been shown* that one has to
double the physical degrees of freedom. It is common to
denote the unphysical variables by a tilde.

The basic axioms of TFD can be summarized? in the
following equations:

[4(1),B(t)1=0 VA,B, ()
(4B) ~ =A4B, (3)
(c1A1+c242) “=ct A1+t A, @)
Wr=wuhH-, (5)
[0(8))~=10(B)), (6)
AW, x) 0B =cAT(t—i}p,x)0(B)), @)
0(B) | AGt,x) =) | ATt +i%B,x)c*, ®)
(4)~ =04, C))

where ¢; and ¢, are complex numbers and |o|=1.
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where s and ¢ are the Mandelstam variables

5= “(k|+k2)2, t=— (k2+k3)2,

B(=ts—its1— o) — (P rotkel _y-ig(— Ls4its1- 10|,

Sometimes one uses the thermal doublet notation

. A, a=1,
4 A T, a=2.
In Ref. 2, TFD has been applied to string field theory.

The finite-temperature string propagator has been given
by

ap
A%(p) = |Up(| po| ) —————Usglpol | - (10)
Lo—1—ia'té
where
eﬁm/z 1
Ua(w)=(eﬁ“’—l)_l/2[ 1 ePol2|
1 0
™=1lo =1 an
Lo=%p*+ X latal+nlc— by +b_pcy)],
n=1]

ak are the oscillator modes and ¢, (b,) the ghost (an-
tighost) mode of the string. The vertices are

v, a=ﬂ=}'=l,
VaﬂY(p)= -, a=ﬁ=},=2’
0, otherwise.

(12)

Although the results (10) and (12) have been derived
with the covariant formulation of string field theory,
correspondence with the first quantized theory makes
one believe that (10) and (12) are correct even in nonco-
variant gauge. Therefore we use (10) and (12) to define
the propagators and the vertices in the light-cone gauge
where

Lo=%p’+ X a',al. (13)
n=1

Now using the light-cone gauge to calculate the
Veneziano amplitude at finite temperature I obtain

(14)

(15)

and B(x,y) is Euler’s beta function. The result (14) is identical to that of Ref. 1. Similarly the results of the one-loop
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amplitudes are identical. Hence from now on the light-
cone gauge will be used with the rules (10) and (12)
with the modification (13) for the bosonic string.

Now our attention is turned to superstrings. For sim-
plicity, only open superstrings are considered. The rule
for the finite-temperature vertices is still (12) since it is a
consequence of the doubling-up rule. However, since the
superstring has both bosonic and fermionic modes its
propagator can have one of the following forms:

Us(| pol ) tUs( i
AP (p) = | L | pol T 5 | pol) ’ (16)
L—ita's
Ur(| po )IUF( po]) | *
Ai.ﬁ(p)___[ r(| pol ! F'|P0| , an
L—ita'é
where
eﬂw/z 1
Ur(w) =(efo+1) "2 | opan|s (18)
L=%1p*+ Y (el ai+ $nS_,T~S,),
n=1]
(19)

’
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=180 U+ 1IBU—Ts—it s, —

Sy are the Majorana-Weyl fermionic oscillators of the
superstring, and

- 1
- =—@@%+r).
V2
r“ u=0,1,2,...,9, are the ten-dimensional Dirac ma-
trices.

Which one of Ag and Ar will be the T=0 superstring
propagator? The answer I give is the following. It will
depend on the statistics of the emitted particles at the
same vertex. If they have the same statistics, the super-
string propagator will be Ag. If they have opposite
statistics, e.g., a spinor and a gauge vector, the super-
string propagator is Ar. This is a direct analogy with
field theory. Furthermore, it is applicable to all tree and
one-loop calculations for which light-cone gauge can be
used.

Let me calculate the tree amplitude of four particles
at finite temperature. I will specify two particles at
different vertices to be the massless vectors. The other
two can be either two vectors or two spinors. I am using
the notation of Schwarz.®> The amplitude is given by

— U xF3)FBAU—Ls+its,—1—10)F=x]

+ 3820 — (G k1) (G5 ko) + RY (G303 ka— k302 k) + RERE G3kAckkh]
x[B(—3s—is61—50)0xF5)FB(—3s+i38,1—3t)F=]
+ 38208 k3l kat o kis kot 8o ksl kot o Gaka ks
+RY (= Gk kot GkAGo ka+ 8o (kb + 3¢tk k3 — o kakbed — GkAGs k)]

x[FBU—Lts+its,—Lt0)Fs+BU—+s—i36,—31)A X F3)],

where
Fs=(Llkotkal £y Q1)

and the upper (lower) sign is used if the other two parti-
cles are vectors (spinors). I expect the calculation of
other tree and one-loop amplitudes to be straightfor-
ward.

The formulation of Ref. 2 has been generalized to
superstrings. The four-particle tree amplitude has been
calculated at finite temperature. It is clear that as
T— 0 the known 7 =0 amplitude’ is regained. I antici-
pate that the finite-temperature superstring amplitudes

(20)

will be important in superstring cosmology.
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