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Truncated-Fractal Basin Boundaries in Forced Pendulum Systems
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This Letter reexamines questions about the practicality of computing the exact stability domains of
certain classes of pendulum systems. We display plots showing that the intertwined neighboring
domains have a self-a5ne truncated-fractal structure. A simple proof of the existence of diffe-
omorphisms from connected basins to striated basins is also presented.

PACS numbers: 03.20.+i, 05.45.+b

Reported here is the study of truncated-fractal defor-
mations in the stability domains of transiently driven,
damped pendulum systems. In systems with constant
driving functions, the attractors vary from simple limit
cycles to chaotic attractors of immense complexity. The
forcing function of the pendulum system studied here
has a nonautonomous sinusoidal driving term which ex-
ponentially decays to zero. It is intuitively clear that this
system, after an appreciable length of time, resembles an
autonomous, dissipative pendulum with asymptotically
stable fixed points separated by intervals of 2tt.

Damped, driven pendulum systems have been used
successfully, in the past, to model complicated behavior
in' nonlinear systems. We choose to study the tran-
siently forced class of pendulums and the distinguishing
feature of our investigation is that we shift our emphasis
from the structural complexity of the attractors to the
composition of the boundaries separating the domains of
attraction of the various (asymptotically stable) fixed
points.

The study of deformed basin boundaries reported here
for the transiently driven, damped pendulum system was
also motivated by the following observation that implies
an apparent contradiction in theory (i.e., Zubov bound-
aries). For autonomous nonlinear systems with asymp-
totically stable fixed points, the method of Zubov pre-
dicts the existence of smooth (with respect to continuity)
boundaries of stability regions. The result due to Zubov
is that a (smooth) stability boundary exists and is given

by Z(x) 1 where Z(x) is the solution to the partial
differential equation

(tlz/tlx) f(x) =H(x)[Z(x) —Il [1+f (x)f(x)l' ',

where

x(t) =f(x(t))
defines the system. It can be seen, later on, that the
second-order, nonautonomous, transiently forced pendu-
lum can be written as a fourth-order autonomous system
with asymptotically stable fixed points. The corollary of
Zubov's construction method points out that if f E C'
the boundary is C'. Note that, although smoothness of

f(x (t ) ) mandates a smooth Zubov or exact stability
boundary, the partial differential equation given above,
except for pathological cases, is impossible to solve ex-
plicitly.

Numerical simulations for critical values of damping
and forcing parameters yielded a basin boundary (exact
stability boundary) that was fractal in nature. We were
thus led to investigate the apparent contradiction be-
tween the Zubov predictions and observations via numer-
ical experiments.

Consider the damped, transiently driven pendulum
system

x~ =x2,

x2 = —dx2 —sinx ~ +ge "cosset,

where xt, x2, d, e, co, and g denote the angular position,
the angular velocity, the system damping coefficient, the
exponent for forcing decay, the forcing frequency, and
the forcing magnitude, respectively. Since Zubov's

method of construction works only for autonomous sys-

tems, the two-dimensional nonautonomous system is

rewritten as a four-dimensional autonomous system.

x~ =x2,

x2 = —dx2 —sinx t+x 3,

X3 = E'X3+ COX4,

X4 = NX3 t'X4.

We conclude that the exact (or Zubov) boundary is

composed of trajectories that are smooth and live in R,
but the slice in R [for which x3(0) and x4(0) are
chosen to be g and 0, respectively] has a truncated-
fractal structure. It is, of course, still a source of wonder
as to how a smooth surface in R could give rise to a
contour as complex as the color plot (Fig. 5) even if it is

only a slice in R .
For the sinusoidally forced pendulum, Gwinn and

Westervelt demonstrated, via simulations, a self-similar
or self-affine fractal structure for the parameter set
d=0.5, co=0.66, g=l.48. Our simulations superim-
posed an m&0 value on the Gwinn-Westervelt critical pa-
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FIG. 2. Magnification of the box shown in Fig. 1.

FIG. 1. Stability domain of the origin for a 350X350 initial
condition grid.

rameter set and tuned e to 0 014 to obtain the
truncated-fractal boundary shown in Figs. I to 5.

Numerical integration, with use of a fourth-order
fixed-step-size Runge-Kutta routine, was done for a
350 X 350 grid of initial conditions ranging from
x~(0) =0 to 2x and x2(0) 0 to 6 in increments of
0.0179 and 0.0171 units, respectively. Each initial con-
dition was integrated numerically for 60 drive cycles of
co (or 570 s of integration time) to allow the initial tran-
sients to decay. The last ten drive cycles of x& were
averaged to determine which equilibrium point the tra-
jectories converged to.

The set of initial conditions yielding convergent behav-
ior in a neighborhood of the origin is shaded. The white
region denotes convergence to other equilibrium points.
Figure 1 shows the initial conditions that were attracted
to the origin. To verify the fractal nature of the bound-

ary (or the origin) magnifications of grid sensitivity of a
portion of Fig. 1 were done and numerically integrated
to obtain Fig. 2 and this was repeated recursively to get
Figs. 3 and 4. The repeated birth of striations under
transformations of scale can be seen in Figs. 2 and 3.
Self-similarity (or more correctly self-affinity) breaks
down in Fig. 4. The box dimension of the fractal was
computed for the 350x 350 grid to be 1.92.

Each initial condition was numerically integrated, with
the same procedure, for a 750x750 grid on the Cornell
National Supercomputing Facility and the results are
displayed as a color plot in Fig. 5. The axis for initial
conditions in pendulum angle ranges from x~(0) =0 to
2z in increments of 2x/750. The axis for initial condi-
tions in pendulum velocity ranges from x2(0) = —6 to 6
in increments of 12/750.
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FIG. 3. Magnification of the box shown in Fig. 2.

The colors red, green, yellow, blue, magenta, cyan,
and white correspond to the x

& coordinate of the equilib-
rium point being —6x, —4x, —2x, 0, +2m, +4m, and
+6m, respectively. Any other equilibrium point was
colored black.

Note that since the t. =0 system does not have asymp-
totically stable fixed points one cannot utilize Zubov
theory to make predictions about the smoothness of the
boundary. On the other hand, the Poincare map is not
a useful tool in the analysis of the e-positive system be-
cause the flow is not periodic.

The apparent contradiction between the smoothness of
the Zubov boundary versus the self-affine fractal stria-
tions observed via numerical simulation is resolved by
our showing the existence of diffeomorphisms between
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FIG. 4. Magnification of the box shown in Fig. 3.
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to account for the correct phasing of the cos(toto) term.

connected and striated basins. Consider initial values of
time at

Consider the driven pendulum system in a compact form

x+x+ sinx =ge "cos(cot )

h =ge

Consider two such values of h: h~, h2 such that h~ be-
longs to a parameter set for a truncated-fractal basin
boundary and h2 is sufficiently small to ensure that the
forcing function perturbation does not affect the nature
of the boundary.

Under operation of the flow for t N2x/tu s, the ba-
sin of the system is diffeomorphic to that of a system
that started at to N2z/tu s (i e., had a value of
h ge '~2*~"). In fact, formally speaking, there exist
diffeomorphisms

Ah ~ ~(x)lg 0 ~(X )tg N2x/o) (It2 h [e ),

by property of the flow.
Construct [h~, h2] by choosing N sufficiently big that

the domain of attraction 8(x) for h ~ has the same topo-
logical (Haussdorf) dimension as the domain 8(x) '

(that has a smooth stability boundary). This implies
that, qualitatively speaking, there exist continuous defor-
mations [at hN. (to)!v 0, 2x/m, 4x/co, N2z/mJ that do not
tear (i.e., create new openings) or fill up existing gaps

F&G. 5. Supercomputer simulations for a 750x 750 grid in color. Vertical axis: initial condition in the pendulum velocity. Hor-

izontal axis: initial condition in the pendulum angle. See text for discussion of colors.
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from a truncated-fractal surface to a nonfractal one.
The new "sprinkle" that distinguishes our pendulum

model from earlier studies is that the forcing function

decays exponentially to zero. This implies that the at-
tractors of our forced system are the asymptotically
stable fixed points of the original unforced, damped pen-

dulum system. We emphasize that the transiently forced
system will not exhibit chaotic behavior since the forcing
shrinks exponentially to zero.

It is possible that the system does exhibit transient
complicated behaviors en route to an asymptotically
stable fixed point but we do not dwell on that. What is

important, however, is that these simulations and

theoretical results (for sufficiently small forcing) ' pre-
dict the growth of intrusions of neighboring stability
domains into the basin boundary of the fixed point at the
origin. This raises questions of the practicality of formu-

lating better analytic estimates for nonconservative re-

gions of attraction in systems that implicitly fall into
these classes of nonautonomous pendulums with critical
driving parameters.
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