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Quantum Tunneling of Magnetization in Small Ferromagnetic Particles
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The probability of tunneling of the magnetization in a single-domain particle through an energy bar-
rier between easy directions is calculated for several forms of magnetic anisotropy. Estimated tunneling
rates prove to be large enough for observation of the effect with the use of existing experimental tech-
niques.
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In recent years there has been considerable interest in

the phenomenon of macroscopic quantum tunneling
(MQT). ' It corresponds to the tunneling of a macro-
scopic variable through the barrier between two minima
of the effective potential of a macroscopic system. To
date MQT has been studied, both theoretically' and ex-
perimentally, in superconducting devices. In this paper
we show that single-domain magnetic particles represent
another rich field for MQT study.

As is known, a sufficiently small ferromagnetic parti-
cle consists of a single magnetic domain. Equilibrium
easy directions of the magnetic moment M (M =MD
being a constant) correspond to the local minima of the
energy

E —M H+A;kM;Mk+Btk(~M;MkMtM~+

where H is the magnetic field and A;k, B;kt, etc. , are
determined by the crystalline anisotropy and by the
shape of the particle. Since M is an axial vector, any
minimum of the energy at H =0 is at least twice degen-
erate with respect to two opposite directions of M. If
one considers M as a spin operator, then the projection
M e onto one of the easy directions e does not in general
commute with E. This means that eigenvalues of M e,
in general, are not conserved quantum numbers even at
8 0, which is not surprising because the magnetic an-
isotropy appears as a result of relativistic interactions. '

Consequently, M can tunnel between the energy minima.
Tunneling removes the degeneracy of the ground state

and puts the particle into a state of a lower energy,
wherein

(M)-O, (M2) =M2. (2)

Here, angular brackets denote a quantum average. For
two successive measurements of M separated by the time
interval ht one should obtain at T=0 and H=0, and
with neglect of dissipation, the effect of macroscopic
quantum coherence'

(M(t)M(t+at)) =Mo'cos(2Pht), (3)

where A, P is the tunneling matrix element. In the pres-
ence of a magnetic field, the potential (1) has, in general,
one absolute minimum and several local minima, so that
the problem of MQT from a metastable state arises. For
both macroscopic quantum coherence and MQT the key
quantity is the tunneling rate P, which should be calcu-
lated in terms of the macroscopic parameters describing
single-domain particles.

The first reference to the possibility of quantum tun-
neling of the magnetic moment in small particles ap-
parently was made by Bean and Livingston. They sug-
gested tunneling as an explanation of the experimental
data indicating that transitions between different orien-
tations of the magnetic moment in single-domain nickel
particles do not disappear completely with a decrease in
temperature to absolute zero. Two mechanisms for the
tunneling process were suggested. The first one applies
to relatively large particles whose size is greater than the
domain-wall width. It consists of the nucleation of a
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domain wall, which subsequently sweeps across the parti-
cle, switching the direction of its magnetization. Since
the energy barrier between the two states is proportional
to the volume of the particle, the tunneling rate due to
this mechanism is extremely small. For particles of size
smaller than the domain-wall width, uniform subbarrier
rotation of the magnetic moment has been consider-
ed' ' on the assumption of the existence of an effective
moment of inertia associated with the rotation of M.
The possibility of such an effect due to the dynamical
equations for M was recently conjectured by one of us
(L.G.)."' In this paper we show that an effective iner-
tia and tunneling follow directly from a quasiclassical
treatment of the dynamical equations for M, and we cal-
culate the tunneling rate P Aexp( —SE/5) for some
typical cases, SE being the extremal imaginary-time ac-
tion for the subbarrier rotation of M.

If we neglect dissipation (the effect of dissipation is
briefly discussed below) the dynamical equation for M is

(=, ~)

FIG. l. Energy E(8 & x,ti) for a model (model I) with an
easy plane and an easy axis in the plane.

Let us consider as "model I" the following form of E:
E(8,&) kiM, +k2My

dM/dt —yM x bE/&M, (4) Kicos 8+K2sin csin p, (9)

I- dt f(Mo/y) jcos8 —E(e,y)},

which is a simple reflection of the fact that

(s)

where y=ge/2mc (g is the gyromagnetic ratio). Intro-
ducing angles 8,& for the direction of M in a spherical
coordinate system, one can also obtain Eq. (4) from the
action 3

where Ki &K2)0. This model describes XOY-easy-
plane anisotropy with an easy axis along the x direction
in the plane. The ground state of the system corre-
sponds, therefore, to M pointing in one of the two direc-
tions parallel to the Xaxis; i e , 8 .2 .x, p O, x (Fig. 1).
In imaginary time, r it, the two Eqs. (8), together with
Eq. (9), give the following equation for p:

x p, p (Mo/y)cose hS,

(S, is the Z projection of the total spin of the particle)
are canonical variables, so that

L px E

is the Langrangean of the system. ' In terms of the
coordinates 8 and p, Eq. (4) is equivalent to

2 (dp/dr) mo(1 —csin p)sin p,

where

mo —=(2y/Mo)(KiK2) ', i.=—K2/Ki.

Equation (10) has the instanton solution

(1 —X) tl'tanhmor
arccos

(1 —ktanh m r)'

(io)

(i2)

8sin8 (y/Mo) aE/aq,

jsine- (y/M,—)aE/ae

(8a)
corresponding to the switching of M from tl x at—~ to p 0 at r ~. After the elimination of 8
with the use of the equations of motion, the action (5)
for this trajectory may be expressed as

ilo= —Sx ——K2 dr(me (1 —csin p) '(dp/dr) +sin pl, (i3)

' Mo/Ay
iro I—

P~exp
h 1+Jk (i4)

Notice that P 0 as X, 1, which follows from the ob-
servation that in this limit E~K(M, +M„) KMo—KM„commutes with M„. It should also be noticed

where the first term can be interpreted as an effective ki-
netic energy associated with the subbarrier rotation of
M. Further integration in Eq. (13) gives

that for single-domain particles which can be considered
as macroscopic, the ratio Mo/h y is large, so that tunnel-

ing defined by Eq. (14) can be observed only when X.« 1,
i.e., in the case of very strong transverse anisotropy Kt,
forcing M to lie in the XOY plane, and comparatively
small anisotropy K2 in that plane.

The tunneling rate can increase in the presence of an
external magnetic field, which decreases the energy bar-
rier.

Our next example, "model II,"corresponds to the sim-

plest case of easy-axis anisotropy along the Z axis and a
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transverse field applied along the X axis:

E=Ksin 8 —HMpsinHcosg+H Mp/4K. (is)

For H (H, =2K/Mp there are two energy minima (E =0) corresponding to &=0: 8=8p and x —
Hp, where

sinHp=H/H, (Fig. 2). The energy barrier between the two states is U=Ke, where e —=1 H/—H, . It disappears at
H=H, when Hp= —,

' x and the two states coincide. From Eqs. (8) and (15) the following equation for 8 can be ob-
tained:

d 8/dz =rpHcotH[1+(dH/dz) /rpH] —2rpirpHcosH[1+(dH/dz) /rpH]'i, (16)

where roH =yH, rp~ =yK/Mp, and z=it In. the limiting
case of a very low field, Hp 0. In this case the approxi-
mate solution of Eq. (16), corresponding to the switching
of M from H=x at z= —~ to 8=0 at z=ao, is given by

i
Up to a constant, this is equivalent to

E =(K~+K2sin p)sin 8 —MpH(1 —cosH). (23)

8=arccos[tanhrp~z].

d b/dz =rpH(-eh+ 2 b ),

which has the instanton solution

b = (2e) ' tanh [JeroH z], (20)

corresponding to the switching of M between the two en-

ergy minima at b ~ (2e) ' . Correspondingly

P ~exp[ —(4Mp/ft y) t.' ']. (2i)

Note that although the WKB exponent (21) becomes
smaller for small t. , the observation of MQT in this case
is impeded by the closeness of the states with 8

—,
' x~ (2c) '~z to each other. The latter have appeared

because H was perpendicular to the anisotropy field.
Our final example, "model III," is described by

Calculating the action for this trajectory, we obtain

P (H/H, )'"~"". (i8)

For H 0, P goes to zero because in this limit E of Eq.
(15) commutes with M, .

For another limiting case, H H„c((1, introducing
b = —,

' x —8«1, we obtain from Eq. (16)

Now the local energy minima are at 8=0 and H=n;
the maximum (see Fig. 3) corresponds to cosH~ =H/H,
(H, =2K&/Mp). The energy barrier between the minima
is U K~e, while quantum transitions are generated
by the transverse anisotropy K2. In the limit e 0,
8~ (2e)', 82 2K'. Using Eqs. (8) and (23) one can
obtain in this limit

d 8/dz =zp (eH ——'8') (24)

(2S)

corresponding to the variation of 8 from 8=0 at z = —~
to 8 82 at z=0, and then back to 8 0 at z=~. Cal-
culating the action for this trajectory, we obtain the
WKB exponent for the tunneling from 8 =0 to 8 =x,

P~exp[ —(8Mp/3hy)(K~/K2) '~ e' ]

where

=exp( —U/ksT, ), (26)

where rpp is given in Eq. (11). Note that one can inter-
pret this equation as subbarrier rotation of the magneti-
zation with an effective moment of inertia M /2y K2
due to transverse anisotropy K2, in the effective potential
created by the longitudinal fields K& and H. Equation
(24) has the instanton solution

8(z) =Hgcosh(rop&ez),

E= —ktM, +k2My —M H, (22) T, =3h y(K)K2) ' Je/8knMp.

with H being opposite to the easy axis OZ and k t, kz & 0.

E(e,o)

0 8, 8

FIG. 2. Directions of the magnetization corresponding to
energy minima for a model (model II) having an easy axis attd
a transverse field along the X axis.

FIG. 3. Energy E(8,/=0) for a model (model III) with an
easy axis, a magnetic field along this axis, and transverse an-
isotropy.
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The prefactor in Eq. (26), as well as in Eqs. (14) and

(21), is of the order of to(U/kaT, ) 't, where to is the
characteristic frequency of the instanton solution. Thus,
the dependence of the tunneling rate on parameters is
dominated by the exponent. On the other hand, the
probability of switching of the magnetic moment due to
thermal activation is proportional to exp( —U/kaT).
Hence T—T, corresponds to a crossover from the
thermal to the quantum regime, i.e., to the regime where
the tunneling rate does not depend upon temperature.
Notice that Kt'=Kt/V, K2 =K2/V, and Mo =Mo/V (Vis
the volume of the particle) are constants of the material.
Thus, T, depends upon H, but not explicitly on the

volume, while the energy barrier U is proportional to V.

For M0=500emu/cm, KI =Kz=5X 10 erg/cm, and
e-0.01 (which corresponds to an accuracy in the mag-
netic field control of hH=eH, =200 Oe), quantum
switching of the magnetic moment can be observed in

particles of diameter =100 A at T( T, =0.06 K with

H=H, =20 kOe. '

In our study of the instanton solutions of the dynami-
cal equation for M we neglected the effect of dissipation.
It can be included by the introduction of the interaction
of M with other degrees of freedom. ' If one takes into
account the interaction with phonons, then Eq. (5), gen-
eralized to include the possibility of a nonuniform

switching of the magnetization, is
r 2Mt'), , t)M/I= dt ~ dV' pcos8 —E(M') —

& a
y t)xk

1 ~ 2 1 I I+ 2 pu —
2 ~iklm&ik&lm aiklm&ik~l~m 's (28)

where M'=MD(stn8cosp, sin8sinp, cos8) is the local
magnetization [8=8(x,t), p=&(x, t)], u(x, t) is the
phonon displacement field, u;t, = —,

' (|);uk+t)ku;) is the
strain tensor, a is the exchange constant, p is the mass
density of the material, and 1, and a are the elastic and
magnetoelastic tensors, respectively. Integration over

phonon variables u(x, t) in the path integral then gives
the effective potential of the system in the spirit of Cal-
deira and Leggett. ' Our preliminary analysis shows

that at least for some experimental situations the in-

teraction with phonons may significantly contribute to
the probability of switching. A more detailed study of
this model, as well as an exact calculation of the prefac-
tor for the tunneling rate, will be presented elsewhere.

In conclusion, we have represented a simple approach
which allows us to estimate the rate of quantum switch-

ing of the magnetization in a single-domain particle with

an arbitrary form of magnetic anisotropy. The WKB ex-
ponent has been calculated for several forms of the an-

isotropy energy. The effect proves to be large enough to
be observed with the use of existing experimental tech-
niques.

Note added. —After this work was completed, we

learned about the work of Scharf, Wreszinski, and van
Hemmen' and Enz and Schilling' wherein the same
quantum problem for a single spin was considered for
similar forms of spin Hamiltonians. In the limit of a
large spin, the results obtained for models I and II by
both the WKB method and numerical diagonalization of
the Hamiltonian are in perfect agreement with our re-
sults. Our method has the advantage of simplicity and
extendibility to inhomogeneous situations which will be
presented in a future publication.
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