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Exact Solution of an S 2 Heisenberg Antiferromagnetic Chain with Long-Ranged Interactions
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The S =
2 Heisenberg Hamiltonian
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Z Jn~m ' trm+n
n 1m 1

with J„JO/sin (ntt/N), is shown to have a simple singlet ground state in the form of a Jastrow function.
The spectrum and correlations are explicitly known and the magnetic susceptibility is shown to be Pauli
type at T 0. The model has a striking similarity to the nearest-neighbor isotropic Heisenberg model
and may be viewed as a discretized version of the Sutherland-Calogero-Moser system.

PACS numbers: 75.10.Jm, 05.50.+q, 71.28.+d, 74.65.+n

Si(x) =„
"sin(try)

dy.
ZJ

I was motivated by the above to inquire further into
the precise nature of the wave function

I y& as a spin
wave function. I show in this Letter that

I y&!s, in fact,
an eigenfunction of a long-ranged Hamiltonian antifer-
romagnet described by the Hamiltonian (a periodic ver-
sion of 1/r exchange)

N N —1 J0e'=-,'g g, ~ o+„
m 1 n 1 s111 ntr/N

(3)

(N even and periodic boundary conditions).
As a prelude, let us examine the .tature of the

Gutzwiller projection in Eq. (1). It is convenient to work
with the Klein operation a„l =c„t, a„l =c„texp(itrN1),
where Nt is the number operation for the up spins.
(These operators have the property that [a„t,a„i]=0.)
A basis wave function for band electrons is written in the

There has been a great interest recently in the proper-
ties of the Gutzwiller-projected Fermi wave function.
The one-dimensional case corresponding to one electron
per atom (Nt =Nl =N/2, N even) is a singlet wave
function,

I tit&=PGI&&; PG=+;(1 —n; n; ),

I e& =II)
Elegant numerical work' has shown that

I ttt& is an ex-
tremely good variational wave function for the nearest-
neighbor isotropic Heisenberg (NNIH) model in that
the energy is close to the Bethe Ansatz results, and also
the spin correlations have a power-law behavior similar
to the exact results. In fact, Gebhard and Vollhardt
have succeeded in computing the spin correlations
analytically and find

(~z~z& Si(nn) (,)„
4zn

(2)

form

Ie'&= ll,', ll,', Io&, (4)
keK qeg

where K is a set of (N —M) momenta occupied by the
up electrons and Q is the set of M wave vectors for the
down electrons. We now perform a particle-hole trans-
formation on the up-spin species generated by a unitary
operator U = (atvl + atv t ) (a 1 t +a11) and consider
the state

I
y&=UPGI p'&=PGU

I
p'&, where PG=II (1

—n l+n tn t). The operator U can be commuted
through the a's and we find

(5)

Expanding the plane-wave states in the Wannier basis
and implementing PG we find

I ttt&
= g det(e' '"')det(e' '"')b~ . bt„ IO&,

~ 1 ~ ~ ~ .~M

where the p's are the set of wave vectors complementing
the set —K and b„=a„la„l. The algebra of the opera-
tors b„ is identical to that of the Pauli spin operators
and, in fact, this representation was first used by Ander-
son in the context of the theory of superconductivity.
To be precise, I write S„+=b„, S„=2

—b„~b„. The state
I y& is thus isomorphic to the state

I X& = g det(e' '"')det(e' '"')5„, Sn„ I F&,

(7)
where I F& is the ferromagnetic state. The totality of
states IX& form an appropriate basis for the spin system
since the determinant forces the vanishing of the wave
function for coincident spin deviation (the kinematical
constraint is fulfilled) and, moreover, the pair of deter-
minants gives a Bose character to the wave function. In
fact, if we chose p's such that p„+q aO (for any n, m),
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~e '+ sin [?r(ni —n;)/N]. (8)

we have the result $',+„Ig)=g„$'„+Ig) =0. Thus Ig)'s
are a set of highest-weight states for the rotation group,
and are also eigenfunctions of the translation operator.
There is a redundancy though, since we can form

C~ C~ such states, whereas the number of in-
dependent states is only CM — C~ —&, the overcount
factor being + 'C~.

Let us now specialize to the case of a half-filled
(M = —,

' ) linear chain and q's corresponding to the Fermi
distribution, i.e., q„=k?,k? + H, k? +28, . . . , k ?+ (N
—1)8, where 0=2?r/N and kl =2??N '(1 —N/4) (N/2
even, k l

=2?rN ' [(2—N )/4] (N/2 odd). Then the
states p„=n —q„and the two determinants become
equal, apart from a phase, and we find the amplitude for
spin deviation to be

y(n?, . . . , n~) =e'" "'
I
det(e' '"')

I

I have used the Vandermonde nature of the Fermi deter-
minant in the above. The phase factor is precisely the
"Marshall sign. " The above derivation in the form of
the modulus square of the determinant is also true for
the square and cubic lattices where z is replaced by a
vector ?r(1, 1) or ?r(1, 1, 1), but the Jastrow-type form is
only true in 1D.

We now turn to the main result in this Letter; we in-
quire if the wave function y is the exact eigenfunction of
any simple Hamiltonian. In this task we are guided by
the remarkable results of Sutherland for the continuum
Bose gas in 1D; Sutherland showed that the many-body
problem with a two-body potential —1/sin (x; —xi) has
a Jastrow wave function for its ground state. A simple
calculation for M=2 shows that the Hamiltonian Eq.
(3) does have the desired property, and I discuss below
the proof of the result for M(N/2. It is expedient to
perform a unitary transformation on P generated by
Q„& ~da„, which absorbs the phase in Eq. (8), and con-
sider the Hamiltonian in the following form:

N —
1

lf,'= ~? g J„(N 4r)+2/f„—/f, = —
—,
' Q„J„(b +„b +H.c.)++J„b +„b +„b b

n 1

Here I have specialized to the sector M =r and the summations are in the region 1 ~ m ~ N 1 ~ n ~ N —1. I define

J„=J„=Jp/sin (n?r/N); J„=(—1)"+'J„.

Let us note that g J„'=x=Jp/3(N —1) and P J„=y=Jp/3(N /2+ I ). Thus k„= —,
' x(N —4r)+2E„where E, is the

eigenvalue of P„. Let us first note the case r =1, where
I y) =Pe'""S„

I F). The eigenvalue E„(k)= —y+nk, where
the single-particle energy is

n =ak; 0( Ik I (?r, a=JpN /2z .

[This is to be contrasted to the usual spin-wave energy for the NNIH model —(1 —cosk)]. Consider the case r =2.
We seek to satisfy the eigenvalue equation

E2y(n, m) =2J„y(n,m) —g, J, [y(n+r, m)+y(n, m+r)] (i2)

with y(n, m) =sin [?r(n —m)/N]. The form of y essentially dictates that of J„. To fulfill the recursion relation, we
use the addition formula

a(n+r) =a(n)y(r)+a(r)+p(n)p(r), (i3)

where a(n)—:sin (n?r/N), y(n) =1 —2a(n), and p(n) =(I/J2) sin(2?rn/N). Substituting, we find the eigenvalue con-
dition to be fulfilled with E2=4Jp —2y, on using gJ, a(r) =Jp. Next consider r =3. We look for the eigenvalue
equation

E3y(n?, n2, n3) =2(J„,—„,+J„,-„,+J„,-„,)y(n n ln32)

—g„J, [j//(n?+I, n2, n3)+lp(n&, n2+r, n3)+l/l(n?, n2, n3+r)], (i4)
with y(n n ?n 2)=3a(n3 —n2)a(n3 —

n&) a(nq
—n2) Atypical .term in the last sum looks like P, a(n3 —n2+r)a(n3—n?+r)J, , which can be simplified with Eq. (13) and the result QJ, f„=o, if f„=a (r), p(r), a(r)p(r), or

p(r) y(r):

g„J, y(n n?n23r+) =??r(n?, n2, n3) Q, J, y (r)+P(n3 —n )lP(n —
3 n2)Q, J, P (r)

+Jp[a '(n3 —n? ) +a '(n3 —n2)] (is)

where p(r) =p(r)/a(r) =J2cot(?rr/N). On adding the three terms from the right-hand side of Eq. (14), we find that
the terms in Eq. (1S) organize in the following way. The piece in the curly brackets cancels exactly the J terms in Eq.
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(14), and the first term contributes to the eigenvalue. The dangerous unwanted term is

yZJ. P (r)[iti(n3 ni)4(n3 n2)+0(n2 ni)p(n2 —n3)+lji(nl —n2)4(nl n3)] (is)

This term simplifies dramatically upon the use of the addition formula for p s. Write n/N(n3 —n2) =x, nN (n2
n l) =y, xN '(n3 —nl) =x+y; hence we find the term in square brackets in (16) to be 2[cot(x+y)(cotx

+coty) —cotxcoty], which is equal to —2. Hence we find

E3= —3g J„r (r)+2+ J„P (r) =16Jp 3y.

We now turn to the general case of r =M (N/2 for which the eigenvalue problem reads

EMljr(nl ~ ~ nM) 2Zi &j Jn n;-p Xr, i Jr ijr(nl ~ ~ ~ ni+r nM)~

with ijf =+;&j a(nj —n;) A. typical term in Eq. (18) reads

g J„ iji(nl, . . . , nM+r) g, J, [a(nM —nl+r) a(nM —
nM —l+r)].

On using Eq. (13), we find a total of 3 ' terms; a generic term is

A(M, vl, v2) a(nM n;,—) a(nM —n;„)p(nM —
nj, ) p(nM nj„—),

1 "2 '

A(M, vl, v2)=Q, J, [a(r)]"'[p(r)]"'[y(r)] ' " "'; OS v;(M —1, 0~ vl+v2(M —l.

Writing y(r) =1 —2a(r) and expanding, we find

M —1 —
Vl V2

A(M, vl, v2) = g ( —2) "' ' 'C„,h (vl+ v3, v2),
V3 0

h (v, v')—:g J, [a(r)]"[P(r)]'.

(i7)

(i8)

(20)

(2i)

(22)

(23)

I now crucially use the fact that the powers of a(r) and P(r) are such that v+ v'( N/2 and hence, in this region, assert
that the only nonzero elements are h(0, 0) =y, h(0, 2) 2Jp, and h(1,0) =Jp. The details of the proof will be presented
in a longer paper, but basically the vanishing of almost all the h's stems from the fact that a(r)J„—( —1)', i.e.,
possesses a "momentum" ir = (2z/N) x (N/2), and the constraints on the values of v and v' force a multiplication of this
function with /ower momentum states. This implies the following nonvanishing As: A(M, O, O) =y —2(M —1)Jp,
A(M, 1,0) =Jp, and A(M, 0,2) 2Jp, hence Eq. (19) reduces to

J, y(nl, . . . , nM+r) =iji y
—2(M —1)Jp+Jp g a '(nM nj)+—2 g p(nM —n;)iti(nM —nj)

jism i,jAm

i&j

(24)

(This is the analog of the Liebnitz product rule for the difference operator J acting on the test function ijr. ) Substi-
tuting into Eq. (18) and using the addition theorem as in Eq. (16), we find that the eigenvalue problem is satisfied with

EM —My+2M(M —1)Jp+ 3 JpM(M —1)(M —2). (2S)

The last term arises from the C3 triples each with a factor of —2, and the second term in (24) cancels exactly the first

in Eq. (18). Combining, we find the eigenvalue of the Hamiltonian P:

XM =
2 xN —2M(x+y)+4M(M —1)Jp+ —,

' JpM(M —1)(M —2). (26)

In order to get a sensible result in the thermodynamic
limit, I chose Jp =J/N so that the energy is extensive in

N. Writing M=N/2p for 0(p( 1, we obtain the en-

ergy

XM/N J= [ 6
——,

'
ji + 6 ji ] —(1 +4jL )/6N (27)

The minimum is achieved for p 1 corresponding to a
singlet state with k;„=—1/6NJ+O(1/N). The mag-
netic susceptibility of the model follows from (27) and

we find X,~;„Ng gaia/4J.

It is not a priori obvious that the wave function pre-
sented here is the ground-state wave function for the

! model. The phase factor in Eq. (8) is the correct phase
factor for the nearest-neighbor model where the Fro-
benius-Perron-Marshall ' criterion is applicable; howev-

er, this theorem does not apply in the present model
since J„oscillates in sign. However, I find from small-
cluster calculations (N (6) that the wave function is
indeed the ground state and conjecture that it is so for
the case of arbitrary (even) N. (The frustration in the
model is weak, i.e., !J2!/! Jl! —,', where Jl and J2 are
first- and second-neighbor couplings, and hence the
Frobenious-Perron-Marshall phase seems to survive. )
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I have computed the excitation spectrum of the model
following the strategy adopted by Sutherland for the
Bose gas, and find near the ground state a spin-1 branch,
analogous to the des Cloizeaux-Pearson branch for the
NNIH model given by tov =2J(

~ q ~/tr)(l —
~ q ~/tr),

0~ ~q ~
~tt. This is r=normalized with respect to the

spin-wave theory by a factor of 2 (compared with tt/2 for
the nearest-neighbor model). Note that the product of
Z,v;„and the spin-wave velocity is (Ng ptt) x (I/2tt) as in

the NNIH model. This product is believed to be a
universal number closely related to the "Wilson ratio. "
The present model is expected to be in the same univer-

sality class as the NNIH model, although the absence of
logarithmic corrections in the correlations [Eq. (2)) sug-
gests that this model has a vanishing coefficient of' an ap-
propriate marginal operator. I remark that the ground
state in this model (tM N/2) possesses a momentum 0
if N/2 is even and tr if N/2 is odd, just as in the case of
the NNIH model. In fact, the wave function cannot be
orthogonal to the NNIH ground state for finite-sized
systems since both wave functions have 5 =0 and have
an identical node structure. (For N=4, the wave func-
tions are identical. ) The overlap presumably vanishes
for large N. A systematic exposition of the excited states
and thermodynamics will be presented in a forthcoming
paper.

The model presented and solved in this paper is seen to
be closely connected to the continuum problem solved by
Sutherland, and corresponds to a particular way of
discretizing the kinetic energy. This kind of discretiza-
tion is, in fact, known in the high-energy physics litera-
ture as the SLAC derivative, and the model solved here
was investigated approximately by Drell, Weinstein, and
Yankielowicz.

The wave function Eq. (8) also appears in the Dyson-
Mehta-Gaudin theory of random matrices if the loca-
tion of n's are regarded as continuous variables. The
present case corresponds to the circular ensembles with
P=4 (symplectic), for which the two-point correlation
function [corresponding to Eq. (2)] is known exactly and
agrees with Eq. (2). Also, the one-particle density ma-
trix in this case is known from the work of Sutherland
and it also agrees with Eq. (2). This perhaps unantici-
pated equality is, in fact, expected in the present model
as a consequence of the singlet nature of the ground state
(implying (St'tS„') =(SoS„")). The discrete nature of the

particle location thus seems unimportant to the correla-
tion functions. If this is true generally, then we may
infer all the n-point functions from the work of Dyson.

Finally I note that the construction of the wave func-
tions for the spin system in the present scheme utilizes a
(many to one) correspondence between the states of a
Fermi gas and the states of a spin system, and may be
the natural setting to give a concrete form to the idea of
a "pseudo Fermi surface" due to Anderson. 'o
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Note added. —After the completion of this paper I re-
ceived a preprint from Haldane" containing somewhat
similar results, to whom I am thankful for the communi-
cation.
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