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A set of Jastrow wave functions comprises exact eigenstates of a family of S=
2 antiferromagnetic

chains with r exchange. The ground state of the isotropic model is in this set, and is identical to the
U ~ limit of the Gutzwiller wave function, also identified as Anderson s "resonating-valence-bond"
state. The full set of energy levels of this model is obtained; the spectrum exhibits remarkable "super-
multiplet" degeneracies suggesting the existence of a hidden continuous symmetry,
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I

(J) g al(1 n)P 1(I —n) v t (2)

where p, q, and J are integers, z =exp(2tri/N), and the
primed sum is from n =1 to N —1. J may be chosen in

the range 1~J&N. Then, for O~q~ J&N —p&N,
(a) S~~(J) 0 for p+q & 2, (b) Spv(J) ( —1)P
for p+q =2, (c) Sp~(J) ——,

' —(p —q)(J ——,
' N) for

p+q =1, and (d) Spp(J) = —,', (N —1)——,
' J(N —J).

If p or q exceed the maximum values allowed by the in-

equality, S&q~0. This means that the set of values

[S~v(J),p+q =r] are all zero only in the range
2 & r ~ min(J, N —J).

It is convenient to choose the total azimuthal spin
S'~ 0, and treat the system as a Bose lattice gas where
S„'=ct=+ —,

' represents an empty site, and cr= ——,
' an

occupied site. There are M= 2 N —S' particles, with

matrix elements —,
' d(n) for a hop of n sites, and in-

teraction energy Ad(n) between pairs n sites apart.
The boson dispersion relation is given by e(k) = —, k(k

In this Letter I construct the exact Jastrow-product
ground-state wave function of the S 2 one-dimen-
sional (1D) isotropic Heisenberg antiferromagnet with
an exchange coupling falling off as the inverse square of
the distance between sites. This state is found to be
identical to the U ~ limit of Gutzwiller's variational
wave function' for the Hubbard chain, and to the 1D
version of Anderson's "resonating-valence-bond" (RVB)
state. I also obtain the wave functions and correlation
functions of a related set of exact eigenstates, give a con-
struction for the full set of excitation energies, and dis-
cuss an anisotropic generalization of the model.

The model Hamiltonian is given by

H =g„&„J(n—n ') (S„"S„".+S~»S» +B,S„'S„' ), (1)

with J(n n') =d(n— n'), whe—re d is the distance be-
tween sites. To impose periodic boundary conditions on
a finite ring of N sites, I take d to be the chord distance
(N/tt)

~
sin [tr(n —n ')lN]

~
.

The mathematical result underlying the solution of the
model involves the sum

Z({nt] ) ( )
([ ]) =Z.f.(J)Z IIJ [1 g~j"

y n;
(4)

where f„(J)= —,
' (2tr/N) z (1 —z") '(1 —z ") ' and

g;,
'"' =Z;j '[(1 —z")Z + (1 —z ")ZJ'], where Z; =z"'

and Z;J =Z; —Z~. If m is an even integer, the product in

(4) can be expanded as a finite polynomial in

(1 —z")~(1 —z ")q with p+q ~ —,
' m(M —1). Provid-

ed —,
' m(M —1) ~ J~ N —

2 m(M —1), terms with

p+q & 2 do not contribute to the right hand side of-(4).
This means that (4) only involves two-particle and
three-particle terms; furthermore, the three-particle term
may be eliminated with the identity [cot(8t —82)cot(8z

83) + (cyclic permutations of 1,2, 3 ) =—1 ] . The right-
hand side of (4) then is given by a constant minus

'H'([ ]n), the inverse-square interaction term with cou-
pling d, (m) = —,

' m(m —1). Provided 5 takes a value cor-
responding to even-integral m, (3) is an eigenfunction of
(1) with eigenvalue Ep(M, A)+ —,

' Et, where

E~ =(2tr/N) [24 m M(M —1) —
2 MJ(N —J)].

(s)
The lowest-energy eigenstate of the form (3) is obtained
by our choosing M and J as close as possible to
while respecting the restrictions on M and J.

-2tt) for 0&k &2tt. In addition, there is an energy
hift

Ep(M, h) = ~'~ (2tt/N) (N —I ) [ 4 NB+M(1 —6)].

Motivated by Sutherland's solution6 of the continuum
limit of this problem, I consider the Jastrow wave func-
tions

y([n;]) =+;exp(2triJn;/N)Q; d(n; n)—
J controls the particle current around the ring; the state
is an eigenfunction of the translation operator with ei-
genvalue T =exp(iE) =exp(2tti JM/N).

If H is the kinetic (hopping) term, and H
~ y) =

~
X),

then
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If (3) is multiplied by +;&~ sgn(n; —nj), it is found to
be an exact eigenstate of the spinless f-ermion version
of the lattice-gas model provided h=d(m) with odd
integral m. This variant model is not related to a simple
Heisenberg chain with pairwise exchange. The cases
m =0 and 1 correspond to free bosons and free spinless
fermions.

The Bose lattice-gas pair correlation function is given

by

M(M —1)C 't gt„; l ~
y({n;j) ~

(6)

F vanishes unless the sum of the k's is a multiple of 2z,
when it has the value N. Except for the limiting case
—,
' m(M —1)=J= —,

' N (which is excluded by the choice
S' ~ 0 for m =2) the restriction on M and J means that
the sum of the k's cannot be equal to any multiple of 2tr

other than 0. The sum over the discrete integers
n =1, . . . , N can then be simply replaced by an integral
over continuous values of n from 0 to N, and the real-
space (N point) correlations of the lattice model are
identical to those of the equivalent state of the continu
um Bose gas model The sam. e argument applies to the
off-diagonal correlation functions.

For m =2, the continuum-model correlations have
been obtained by Sutherland. In the thermodynamic
limit with M/N ~ m, J/N jm,&j & 1 —m, the
longitudinal and transverse spin correlation functions
on diA'erent sites are respectively given by (S„'S„')
—(S„')(S„') =C (x) and (S."S„",) =(S~S~ ) =C.(x), x
=2tr(n n'):—

C~~
=mx ' Si(mx )cosrnx

—x [Si(mx ) +sinmx] sinmx,

C~ = —,
' x ' Si(mx)cos jx,

where Si(x) is the sine integral. Note that the dominant
asymptotic correlations are algebraic (times a periodic
component) with exponent rt =rt ' =1, independent of
m, and without logarithmic corrections. This is in con-
trast with calculated properties of the chain with only
nearest-neighbor exchange (where g is renormalized
for m ~ —, ), and indicates the absence of the "spin-
umklapp" ' (backscattering) processes that are

where C is the normalization of y. To evaluate this, I
note that

~ y~ is proportional to a power of a MXM
Vandermonde determinant:

[det;, ~exp(ik n, )
~
]

where k ~~ =k +(2z/N), and the set {k j is invariant
under k —k, so that

~
k

~

~ n'(M —1)/N. The
determinant can be expanded, and (6) reduces to a sum

of terms made up of products of quantities F(k~, . . . ,

k2 ), where the k's are members of the set {k j, and

present (with the marginally irrelevant sign of coupling)
in the nearest-neighbor exchange model. With the other
sign of coupling, these processes drive a transition to di-

mer order. ' "
Provided j is in the allowed range, it is found that the

Fourier transform of the transverse spin correlation
function vanishes identically at Q=0. This shows that
the states (3) are the top members of their multiplets
with total spin quantum number S=S'. For finite N,
closer examination shows that states on the boundary of
the allowed region [J=

2 N + (M —1 —
—,
' N )] have

S' & S and are members of multiplets with top members
in the interior region at M —1 and J+ 1. To keep only
distinct states, the allowed range of J for m =2 can be
reduced to M ~ J& N —M.

When m =j—2, the correlations are isotropic:
(S„'S()= 4 8'~( —1)"Si(nn)/(xn). This is precisely the
correlation function of the spin singl-et Gutzwiller-RVB
wave function for the Heisenberg model recently ob-
tained by Gebhard and Vollhardt.

It is straightforward to see that the wave functions (3)
with m =2 are indeed Gutzwiller projections of free
spin- 2 lattice fermion wave functions into the subspace
where every site is singly occupied. The wave functions
can be rewritten as the amplitudes y({a„j) for the sys-

tem to be in the state
~
{o„j),where o„=+ —,

' is the ei-

genvalue of S„'.

y +„exp(2tri Jno „/N )Q„&„d(n n') "'. (10—)

The Slater-determinant wave function where occupied
states are Bloch states with consecutive crystal momenta
k can be written as a Vandermonde determinant. The
wave function (10) may be recognized as the product of
two such Vandermonde determinants, one for the sites
with o=+ —,

' and one for cr = —
—,
' sites.

After obtaining the sign change when site-ordered
products of fermion creation operators are factorized
into separate products for each spin component, it is
found that the states (3) are obtained from Gutzwiller
projection on a free fermion state with N —M consecu-
tive occupied cr=+ 2 Bloch states and M consecutive
occupied o= ——,

' states. The centers of the two sets of
occupied states are relatively displaced by J—

2 N
states; a uniform shift in k space of all the occupied
states leaves the Gutzwiller-projection state unchanged.
Except at the limiting values of J, the set of occupied
o.= —

2 states is contained entirely within the set of oc-
cupied o.=+

2 states.
Sutherland has constructed the set of excitation ener-

gies of the continuum model as the sum of kinetic ener-
gies e(k;), where {k;j are a set of M (real) distinct
"pseudomomenta. " For the discrete set of couplings
h(m), m integral, Sutherland's equation fix the pseu-
domomenta to have values k; =2+m;/N, where m; are
integers satisfying the constraint m;+~ ~ m;+m. Exam-
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ination of the energies of states (3) shows that they are
consistent with this construction, and have consecutive
real pseudomomenta with m;+ ~ =m;+m, where fm;j are
restricted to the range O~m;~N. Comparison with
the total number of states for a given M shows that the
set of states with real pseudomomenta are incomplete for
m&1.

Numerical study of small systems confirms that the
energy levels predicted by the real pseudomomentum
construction are found in the full spectrum, but that oth-
er energy levels also occur, which presumably involve

complex k;. Solution of the M =2 problem shows that in

addition to the (real pseudomomenta) scattering states,
there are m —2 bound-state bands above the top of the
continuum of energies of asymptotically free two-particle
states. (There is no such upper limit in Sutherland's
continuous model. ) The top of the continuum consists
of doubly degenerate states where one of the two m; is

either 0 or N. One linear combination of these is not a
true scattering state, but is an incipient (algebraically
decaying) bound state that evolves into a true bound
state for 6& A(m). Further discussion of the m & 2
models is postponed to a separate publication.

For the isotropic model, the numerical study reveals a
surprising fact: States are grouped into highly degen-
erate supermultiplets, and at every value of the crystal
momentum and parity, every energy level is contained in
the set derived from states with real pseudomomenta,
and the energies in units of —,

' (n/N) are all integers
The k 0 boson creation operator is the lowering opera-
tor for total azimuthal spin; if k;=0 (rn; =O, N) is

present in the set of pseudomomenta, it is found that the
state is not the top member of its spin multiplet. If such
states are excluded, the remaining states are all top
members of their multiplets, and generate a complete set
of energy levels. Sample spectra of small systems are
given in Fig. 1. Spin multiplets are grouped into degen-
erate supermultiplets, and the state of maximum spin in

each group is a real pseudomomentum state.
For even N, the ground state of the isotropic model is

a nondegenerate spin singlet (the Gutzwiller-RVB state)
with jm;j =j1,3, . . . , N lj, and k= —,

' Nrr. —The ele-

mentary excitation corresponds to a hole (mj+~ =mj+2
+8~; for some i) and is a spin- 2 neutral fermion excita-
tion that only occurs on its own in a system with odd N.
Its allowed crystal momenta K span half the Brillouin
zone,

~
K —Kv ~

( —,
' x, Kv = —,

' (N —1)rr, with the disper-
sion relation E(K) = —,

' [(—,
' rr) —(K —Ko) ]. (It is the

condition m;~O, N that restricts the real pseudomomenta
states with S= —,

' to half the Brillouin zone. ) Note that
because of the supermultiplet structure, the Gutzwiller-
RVB ground state is the only nondegenerate state for
even N, and the half-band of single elementary excita-
tions for odd N are the only S =

2 states without extra
degener acies.

The remarkable supermultiplet structure of the spec-
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FIG. 1. Low-lying energy levels of the N 11 and N 12
models. Each real pseudomomentum state (with rn;aO, N) is
indicated by a filled circle (some degeneracies are present).
Supermultiplet structure is also indicated; e.g. , "231"indicates
a group of states consisting of (for odd N) 2 (S= 2 ), 3
(S= —, ), and 1 (S= —', ) multiplets. For even N, it means
(S=0) 8(S 1) $(S 2)'. Broken lines are a guide to the
eye indicating the bottom of the excitation continuum; the full
line indicates the elementary S =

2 fermion excitation.

trum of the isotropic model suggests that hidden continu-
ous symmetries in addition to those of the usual rotation-
al SO(3) or SU(2) group are present. In the large-N
limit, the low-energy states of the model are described'
by the chiral-SU(2)-invariant k =1 Wess-Zumino-
Witten model, which is a conformally invariant Gaussian
field theory. The supermultiplets of states of the lattice
model with the same crystal momentum K resemble
those of the field theory (given by the Gaussian or "Lut-
tinger liquid" construction), although the grouping of
states with different K into "conformal towers" only
occurs in the field-theory limit. Clearly some subgroup
of the large symmetry group of the field theory persists
as a hidden continuous symmetry of this discrete-spin
lattice model, and it will be interesting to elucidate this
structure.

Since "spin-umklapp" processes ' are (marginally)
irrelevant and their coupling scales to zero in the gapless
ground-state phase of the 1D spin- —,

' antiferromagnet, '

the model solved here must represent the "fixed point"
model Hamiltonian for this phase. The Gutzwiller-RVB
wave function would thus seem to be the basic model for
the gapless, nondimerized ground state; it seems likely
that the hidden symmetries clearly present in this model
are intimately related to the physics of the gapless phase.
Since these symmetries of the fixed point are obscured by
the irrelevant symmetry-breaking perturbations for other
than inverse-square exchange, this model provides a
valuable opportunity to clarify the nature of the RVB
state and its neutral-fermion excitation spectrum.

In conclusion, I note that it is quite possible that Jas-
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trow wave functions of the kind discussed here may have
application in two or higher dimensions. Indeed,
motivated by apparently very different arguments involv-

ing analogies to the fractional quantum Hall effect, Kal-
meyer and Laughlin' have proposed that the RVB state
of the triangular lattice antiferromagnet is related to just
such a state. The condition N) m(M —1) found here
for the lattice-gas ground state to be a Jastrow state is
also reminiscent of a similar condition' in the construc-
tion of the ground states of the "truncated pseudopoten-
tial" model for the fractional quantum Hall effect.

This work was initiated during and stimulated by the
Summer Program of the Aspen Center for Physics. The
author is an Alfred P. Sloan Foundation Fellow.

Note added. —Since submitting this Letter, I have re-
ceived a preprint from Shastry, who independently re-
ports that the Gutzwiller-RVB state is the ground state
of (1) with 5 =1 and even N. '
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