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The crossover between 2k and 4kr charge-density waves in an extended one-dimensional Hubbard
model is studied in the U— o limit by mapping onto a Heisenberg antiferromagnet with a competing
second-neighbor Ising interaction. The phase diagram is obtained by a combination of field-theory tech-
niques and numerical solution of finite chains. Regions of staggered spin order (4kF site or bond order)
and (2,2) spin order (2kf site order) are mapped out. Critical exponents in the algebraic phase are

obtained.

PACS numbers: 75.40.Cx

A number of models of interest in statistical mechan-
ics, field theory, and the many-body problem are related
to the spin chain

H =2, — U (SESF 41 +S4S%+1)
+J1SiSE 41 +J2SESE 4 +HSE, (1)

where S5, S7, and S; are Pauli matrices. There is par-
ticular interest in the case of antiferromagnetic coupling
(J1,J2>0) for which the competition between first- and
second-neighbor exchange gives rise to a rather rich
variety of physical behavior. Equation (1) is a generali-
zation of the XXZ model' and the lattice Hamiltonian
versions of the Thirring? and Van Beijeren® models. It
may be compared to the Hamiltonian form of the aniso-
tropic next-nearest-neighbor Ising model® in which the
spin-flip term is replaced by J,2S5. But our main in-
terest is to use # as a model for the so-called 2k and
4k charge-density-wave (CDW) instabilities in organic
conductors,® making use of the exact mapping® between
7 and the extended Hubbard model with infinite on-site
interaction U. In this representation, SZ is + 1 if a site is
occupied by an electron and —1 if it is unoccupied, J, is
the transfer integral, J; and J, are Coulomb interac-
tions, and H is the chemical potential. Scattering experi-
ments> have found evidence for two kinds of CDW in or-
ganic conductors, one of which is thought to be related to
a Peierls transition and the other to the formation of a
Wigner crystal. Although some materials display both
CDW’s, there is little understanding of the crossover
from one to the other as parameters such as the tempera-
ture and pressure are varied. This is what we hope to at-
tain by a study of the spin chain for which the CDW'’s
correspond to various forms of magnetic order.

Hirsch and Scalapino’ have used a quantum Monte
Carlo method to study CDW’s in the extended Hubbard
model with J,=0 and U infinite. We shall use a dif-
ferent approach to show how the inclusion of second-
neighbor interactions, which is reasonable on physical

grounds, gives rise to a significant modification of the be-
havior. The use of spin representation gives a particular-
ly clear interpretation of the phase diagram and also
leads to results of interest for spin chains in general.

The ground state of # is known for certain limiting
values of the parameters. When J, =0, the Hamiltonian
is a simple Ising mode whose ground state (for H =0) is
antiferromagnetic (AF) for J; <2J, and a (2,2) state
(++——++——"---) otherwise. In electron-gas
language they correspond to the Wigner crystal and
Peierls CDW, respectively. The ground state at J, =2J,
is highly degenerate. On the other hand, when J,=0
but J, is finite, exact results' show that the AF order
persists up to J, =J; where it gives way to an algebraic
phase with power-law correlation functions.

Figure 1 shows the more general phase diagram which
we have established for H =0 (zero magnetization or a
quarter-filled band in the Hubbard model). The alge-
braic region is a plane of critical points whose exponents
are functions of a single variable 8(J,/J,J,/J1). It will
be seen that this phase is best characterized by the 6
contours, and that 6 =1 is the boundary between alge-
braic and ordered phases shown in Fig. 1. The latter
have either AF order or staggered order in the XY spin
plane [which will be shown to be equivalent to bond or-
der (BO) in electron-gas languagel, separated by a line
of fixed points shown as the broken line in Fig. 1. The
(2,2) order appears through an additional transition
within the BO region, and it competes with the BO,
finally destroying it at J, =0.

Since an exact solution is not available for J,0, we
have obtained these results by using a combination of
analytical and numerical methods to relate the lattice
model to a continuum field theory from which the
asymptotic behavior of the correlation functions may be
obtained. The essence of the method is as follows. If #
is rewritten in terms of fermion variables,® it contains
both direct and umklapp scattering processes®'* with
coupling constants g; and g,, respectively. For weak
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FIG. 1. Phase diagram for the model. The ordered phases
are antiferromagnetic (AF), bond ordered (BO), and (2,2) as
described in the text. They correspond to 4kf site order, 4k§
bond order, and 2k¥ site order, respectively. The region above
the ordered phases is a plane of critical points. The broken line
is a line of fixed points of the renormalization-group equations
(2). It is stable in the algebraic region and unstable between
the ordered phases.

coupling (g4,g,)~(J,J1—4J3). In writing down the
renormalization-group (RG) equations which govern the
approach to the continuum limit, it is best to change
variables from (gz,g,) to (0,g,) so that the variable 0,
defined above, appears directly. If we denote the renor-
malized values of 6 and g, by 6 and gu, the RG equa-
tions to lowest order in g, are’

do/dl =ag?, (2a)
dg,/dl =(2—-2/6)g,, (2b)

where / is the logarithm of a cutoff, to be specified later.
Long-range order is produced when g, is a relevant vari-
able as / increases; otherwise the correlation functions
are power laws.371 With use of Eq. (2b) this means
that the phase boundary occurs when 6 =1, where 0 is
the value of 8 at g, =0.

In order to use this result to determine the phase
boundaries shown in Fig. 1 and to evaluate 6 in the alge-
braic phase, it is necessary to carry out the global renor-
malization from the original model, where g, may not be
small, to the neighborhood of the fixed line, g, =0, where
Egs. (2) are valid. For J,=0, Luther and Peschel!
made use of known critical exponents' to show that
cosn=—J,/J.. For the general case it is necessary to
use numerical methods.

As a controlled approximation, we have diagonalized
the Hamiltonian 7y for N sites on a ring in order to ob-
tain boundary conditions for the RG equations (2), using
I=InN. This approach has a greater analytical input
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TABLE 1. Critical exponent parameter for J,=0. Values
obtained from the renormalization-group method (RG) de-
scribed in the text and from Luck’s relation are compared to
the known analytical values.

JxlJ\ RG Luck’s relation Exact
1 0.953 0.995 1.0
1.25 0.796 0.814 0.795
1.50 0.734 0.733 0.732
1.75 0.696 0.694 0.694

than the usual finite-size scaling method and can give a
much higher accuracy. The idea is to identify the size
dependence of g, through its effect on the energy levels
of #x, as used in a related study of the Potts models.’
For J, =0=J,, the fermion form of # may be diagonal-
ized to give a cosine band which is half-filled and has
Fermi surface kg= =+ /2 when H =0. For fixed particle
number, the lowest excited levels | 4) and | B) with en-
ergies E4 and Ep have momenta * x and are produced
by the transfer of a particle to the left or the right across
the Fermi surface. In the absence of interactions, E 4
=FEpg, but in general the states are coupled by umklapp
scattering and the level splitting £4 — Ep gives a mea-
sure of g,. Equations (2) sum all orders of perturbation
theory to produce an effective interaction g, (dependent
on N) from which E4—Ej may be evaluated in first-
order degenerate perturbation theory. The analysis in-
volves two steps: (i) Determine g, (V) numerically and
use it to find 6(V) from the discrete form of Eq. (2b),

Alng, =(2—2/6)AInN; 3)
(ii) fit the results to the solution of Eqgs. (2),
Agl=6—9—1n(6/6), 4)

in order to determine the constants of integration 4 and
9. Then 8 is the value of 6 on the fixed line 2. =0, as re-
quired. The accuracy of this procedure is illustrated in
Table I by a comparison with the known exact values of
9 for J,=0. Usually it is not easy to obtain accurate
values of critical exponents in regions where there are
two marginal variables, and the good agreement we have
obtained reflects the full utilization of the information
contained in the RG equations.

But the analysis is not so straightforward everywhere.
In lowest order, g, ~J, —4J, and the levels E4 and Ep
cross when J,=J,/4. As J, is decreased, the degeneracy
point traces out a line which generally depends upon N
but passes through J,=J,/2 as J,/J,— oo. For N— oo
this is in fact the fixed line of Egs. (2) just as the 6 con-
tours are the flow lines. The phase diagram of Fig. 1 is
then an image of the full RG flows. However, it is clear
that when the size dependence of E 4 — E is significantly
affected by the movement of the fixed line with », it can-
not simply be used a means of determining 6, and it is
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necessary to find some other method. We have chosen to
use Luck’s relation'? for the splitting Ay between the
ground and first excited states of an N-site system:

NAy =nvg/6, (5)

where vf is the Fermi velocity.13 Table I illustrates the
accuracy of the method for J,=0. To obtain Fig. 1, Eq.
(5) was used in the algebraic region for 0.2 <J,/J;
< 0.7, which allowed a sufficient overlap with the other
methods of determining 6 and the phase boundary.

Turning now to discussion of the ordered regions, it is
expected that the AF phase, which is known to exist for
J2=0, should extend out to finite values of J, but change
its character across the fixed line. This may be under-
stood by our carrying out a chiral transformation'*
which reverses the sign of g, and effects the following
change in the staggered magnetization operator:

Zm(Sém _Sim+l)
qu(ngS)Z(m+l+S¥mS§m+l)' (6)

Then the right-hand side of (6) should give the order
parameter on the large-J, side of the fixed line. This
is a staggered order in the XY plane or bond order in
electron-gas language, since it is a staggered kinetic en-
ergy in the fermion representation. As noted by Hal-
dane,!® the existence of the BO phase is also suggested
by comparison with another, exactly solved, second-
neighbor model, !¢ which lies in the g, <0 sector and has
a dimerized ground state equivalent to a fully saturated
BO parameter. However, this cannot be the whole story
for the Hamiltonian of Eq. (1): There must be a further
transition to establish the (2,2) order which we know to
exist at J, =0. We have verified this picture and ob-
tained the phase assignments of Fig. 1 by evaluating the
order parameters numerically and extrapolating to
N— oo in the manner of Bonner and Fisher. !’

It is possible to give a more detailed account of the
competition between BO and (2,2) order. In the AF and
BO phases of the infinite system, the lower of the two
states | 4) and | B) is degenerate with the ground state,
and there are two equivalent phases related by displace-
ment through one lattice site. But the (2,2) phase is
fourfold degenerate. The two additional states have
wave vectors *n/2 and when J,=J,=0 they are
particle-hole states with energy 2J,. As the interactions
are switched on, the states descend (remaining degen-
erate by reflection symmetry) and, finally, at the (2,2)
phase boundary they become degenerate with the two
ground states of the BO phase. This is the basis for the
numerical method of locating the phase boundary shown
in Fig. 1.

Yet another view may be obtained by our starting
from J, =0. Group the spins in one of the (2,2) states
into antiparallel pairs [(+ —)(—+)(+—=)(—+) ---]
and introduce a pseudospin 77 which is +1 for (+ —)

and —1 for (—+). Then the state is antiferromagnetic
in the 77 and it has a partner obtained by the displace-
ment of the (2,2) state by two sites or the 7, variables by
one site. This is a useful representation for small J, be-
cause the J, term in 7 can reverse a 77 but not break a
pair since it does not act on parallel spins. In this limit
(small J,), # reduces to an effective Hamiltonian

Heo=— Tnl2xti+ () =20 ) titi 4], ™

which is an Ising model in a transverse field!® and has a
phase transition at J, =J,—J /2 where the (2,2) order
disappears. This line agrees well with the phase bound-
ary obtained numerically.

A physical picture of our results may be given in the
language of the one-dimensional electron gas: for U
— o a 2kp charge-density wave on the sites [(2,2)
phasel always appears as a dimerization of a 4kg
charge-density wave on the bonds. The same qualitative
picture should be valid for large but finite U. It will be
of interest to study the model at finite temperatures to
see how the various phases are first manifested as the
temperature is reduced and to make a more direct con-
nection with experiments on organic conductors.’

One of us (C.N.) acknowledges the hospitality of the
Physics Department at Brookhaven National Laboratory
and the other (V.J.E.) acknowledges the hospitality of
the Laboratoire de Physique des Solides, Orsay, and of
IBM Ziirich, the various institutions at which this work
was carried out. The work at Brookhaven was supported
by the Division of Materials Sciences, U.S. Department
of Energy, under Contract No. DE-AC02-76CH00016,
and by travel grants from the Centre National de la Re-
cherche Scientifique, under the U.S.-France Cooperative
Science Program (NSF-INT-8313320).

1J. D. Johnson, S. Krinsky, and B. M. McCoy, Phys. Rev. A
8, 2526 (1973).

2A. Luther, Phys. Rev. B 14, 2153 (1976).

3H. Van Beijeren, Phys. Rev. Lett. 38, 993 (1977).

4I. Peschel and V. J. Emery, Z. Phys. B 43, 241 (1981).

5For a review, see J. P. Pouget, in Low-Dimensional Con-
ductors and Superconductors, edited by D. Jérome and L. G.
Caron (Plenum, New York, 1987), p. 17.

6V. J. Emery, in Highly Conducting One-Dimensional Sol-
ids, edited by J. T. De Vreese, R. P. Evrard, and V. E. Van
Doren (Plenum, New York, 1979), p. 247.

7J. E. Hirsch and D. J. Scalapino, Phys. Rev. B 27, 7169
(1983), and 29, 5554 (1984).

8F. D. M. Haldane, Phys. Rev. Lett. 45, 1358 (1980).

9J. L. Black and V. J. Emery, Phys. Rev. B 23, 429 (1981).

10M. P. M. Den Nijs, Phys. Rev. B 23,6111 (1981).

1A, Luther and I. Peschel, Phys. Rev. B9, 2911 (1974).

125, M. Luck, J. Phys. A 15, L169 (1982). See also H. J.
Schulz and T. Ziman, Phys. Rev. B 33, 6545 (1986).

131t was pointed out by M. Kolb and K. Penson (private com-
munication) that an accurate value of vy may be obtained from
the O(1) term in the ground-state energy with the analytical

633



VOLUME 60, NUMBER 7

PHYSICAL REVIEW LETTERS

15 FEBRUARY 1988

expression obtained from conformal invariance by H. W. J.
Blote, J. L. Cardy, and M. P. Nightingale, Phys. Rev. Lett. 56,
742 (1986), and 1. Affleck, Phys. Rev. Lett. 56, 746 (1986).
14In the continuum fermion form of the Hamiltonian, a chi-
ral transformation makes a phase change y;,— e'“y; and y,
— e 'y, where y, and y; are right- and left-going fermion
operators, respectively. In the lattice fermion form, the chiral
transformation is obtained by our dividing the lattice into cells
containing two sites of 2m and 2m+1, then carrying out a
canonical transformation azm— cosadm +sinadm+1; Am+1

634

— —sinaa@im+cosaaam+1. If this transformation is applied
to the fermion form of the staggered magnetization
> m(@3maam —a3m+1a2m+1) and the result is rewritten in terms
of spin variables, the transformation (6) is obtained.

ISF. D. M. Haldane, Phys. Rev. B 25, 4925 (1982).

16B. S. Shastry and B. Sutherland, Phys. Rev. Lett. 47, 964
(1981).

175, C. Bonner and M. E. Fisher, Phys. Rev. 135, A640
(1964).

18p_Pfeuty, Ann. Phys. (N.Y.) 57, 79 (1970).



