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fn a magnetic field, a wave function in a two-dimensional system is uniquely specified by the position
of its nodes. %'e show that for high fields and a weak random potential, motion of the zeros of the wave
function under smooth changes of the boundary conditions can be used to characterize the behavior of
the one-electron states and distinguish between localized and extended states.
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Following the discovery of the quantized Hall eÃect'
an argument for the quantization based on gauge invari-
ance was given by Laughlin, which also shows that
changes in cr„~can occur only if the Fermi energy lies in

a region of extended states. Further work by Thouless
and co-workers and others s has related the quantized
value of o„~to topological properties of wave functions;
from this viewpoint, the connection with delocalization of
the wave function is not clear. In this paper, we show
that a simple connection between delocalization of wave
functions and their topological characteristic which leads
to a nonzero o„y can be made. The existence of truly
delocalized states in the large field limit is to be contrast-
ed with the behavior of 2D systems at H =0 where no
extended states are believed to exist.

In the presence of a magnetic field, wave functions ex-
hibit nodal points rather than nodal lines, the latter be-
ing the generic situation in systems with time reversal
symmetry. In two dimensions, and in a high enough
magnetic field that the electrons can be considered
confined to the lowest Landau level (LLL), wave func-
tions are completely determined by the location of their
zeros. Such a description provides a convenient and

physical approach to understand localization produced
by a disordered single-body potential. When generalized
periodic boundary conditions are enforced over a finite
system, the zeros, now finite in number, move smoothly
under continuous changes in the boundary conditions.
The sensitivity of a wave function to boundary-condition
changes allows a distinction between localized and ex-
tended states; we shall show that there exist states
whose wave function can be forced to vanish at any
specified point in real space by a suitable choice of
boundary conditions. Such a state naturally appears to
be "extended"; moreover, the covering of real space by
the zeros of the state is characterized by an integer,
which is identical to the quantized value of the
boundary-condition averaged 0 y.

We consider the Hamiltonian 0=Ho+ V(r) in two
dimensions, with kinetic energy Ho=(2m) (p+eA/
c)2. We work in an arbitrary gauge A= —,

' rxB+bc/
eM, with B= —Bi the magnetic field. For a free parti-
cle, Ho is a harmonic oscillator in the cyclotron coordi-
nates, with a spectrum E„=(n+—,

' )@to, and a natural
cyclotron frequency co, =eB/mc. Each Landau level is
extensively degenerate, with a density of states per unit
area N, /0 =1/2trl, where l =(hc/eB) 'I is the magnet-
ic length. When an external potential V(r) is imposed,
the Landau levels will both broaden and mix; however,
when the cyclotron frequency is sufficiently large, the
essential physics is well described by a LLL-projected
Hamiltonian. (We assume that the LLL is only partially
occupied, i.e., v=2trl n & 2, where n is the areal densi-
ty). The most general form of a LLL wave function is

+(r) f( )e zz/4I —i—z (1)
where z =x+iy, and f(z) is an analytic function of its

FlG. l. Contour maps (in the primitive unit cell) of a nu-

merically generated smooth random potential (dashed lines,
linear scale), and of the probability density

~ ps I

highest-energy state (solid lines, logarithmic scale).
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N,

f(g) e" ' e "~Qe)(n(& —gk) ~i),
k 1

(2)

where el(ru
~
r) is the Jacobi 8 function, which possesses

simple zeros at ro/n ji+zj2 for all integers jl,j2. The

argument. In order to treat finite systems, we impose
generalized periodic boundary conditions on a square of
side L containing an integral number of flux quanta
N, =L /2+1, by requiring t(L~) ~ y& =e' '~ |lr&
(j=1,2), where t(r) is the magnetic translation opera-
tor. This leads to a general form for f (in terms of the
rescaled length variable ( z/L)

freedom to choose arbitrary boundary-condition phases
8~, 82 follows from the breaking of time-reversal symme-
try by the magnetic field; fixing the 01 leads (for N,
even) to the condition X n~+8~/2n as well as a con-
straint on the "center-of-mass" coordinate

=N, ' g gk -N, ' (n2+ 82/2') i—X .
k 1

Here nt, n2 are integers, each of which may take on N,
distinct values, 0~n~ &N, . (For N, odd, one replaces
n~ by n!+ 2 in the above formulas. ) Equation (2) shows
that there will be precisely N, zeros inside the principal
region 0 [0(Re(g) & 1; 0(im(g) & 1] which are

FIG. 2. Map of the nodal points of four of the N, ( 8) wave functions in the potential of Fig. 1 for a fine grid of boundary condi-
tions.
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periodically repeated in every unit cell. The position of
the zeros gk completely determines the wave function.
There are precisely N, states, which are nondegenerate
for a general potential V(r), and are quasiperiodic, satis-
fying

y(r+LJ) -e' 'exp(irxLJ" z/2l )y(r).

In Fig. 1, we show a contour plot of a typical smooth
potential v(r) (with a correlation length chosen equal
to the magnetic length) together with a contour plot
of log~ y~ for the highest energy state ys for N, 8.
The wave function is peaked on the hill of the potential,
and the eight zeros cluster along the potential minima as
would be expected on semiclassical grounds. We now
study the sensitivity to boundary conditions by plotting
(Fig. 2) the location of the zeros for four of the eight
states in the potential of Fig. 1, for a fine mesh of points
covering the boundary angle space 0~ 8J (2x. Each
zero moves smoothly as the values of 8J are continuously
changed. For the state ys, the zeros move along fine fila-
ments connecting around the real-space torus. That the
pattern of zeros must be connected in this fashion follows
from the constraint on g, and the periodicity of the
zeros under 8~ 8J+2m.

With decreasing energy, the states y7-5 possess similar
filamentary structure, which broadens slightly as the
center of the band is approached. In addition, there ap-
pear nodes on the hill of the potential which are insensi-
tive to the boundary conditions; they correspond to the
semiclassical description of localized states of increasing
angular momentum centered on the hill. Thus the state

y5 has three "localized" zeros. A similar picture applies
to the low-lying states yl 2, with the wave function now

predominantly confined to the potential minimum (al-
though a semiclassical description is less appropriate be-
cause the minimum of the potential in Fig. 1 is less pro-
nounced than the maximum). y3 is on the verge of delo-
calization, but the zeros remain confined to a bounded
region of the torus.

The fourth-highest state iit4 departs radically from this
picture. The zeros are now highly mobile, and complete-
ly cover the real-space torus, although their density is far
from uniform. Such extreme sensitivity to boundary
conditions is characteristic of the behavior of an extend-
ed state, and we believe it may be used as a definition:
An extended state may be made to vanish at any speci-
fied point by a suitable choice of the 8i. All states can
be characterized by a relative integer, the Chem index

Ci(m), which counts the covering of the real-space torus

by the zeros gk (8i, 82) for the state y . Ci(m) takes the
value +1 for m -4 and is zero for the remaining states
in Fig. 2. This is easily seen if one notes that the zero
maps of Fig. 2 are, with the exception of y4, projections
of "tubes, " so that the inverse map of zeros in 8 space
for fixed g is typically null or double valued. It is

straightforward to show that g '- i Ci (m ) -1, so that

there must exist at least one nontrivial state.
We have also calculated the Hall conductivity a ~ as a

function of both energy e and boundary-condition angles.
The Kubo formula may be written as

N,

a„~(E;8i,82) = g ba„i,(m;8i, 82)e(E E)—,

(3)

baby(m;8}, 82) et) ( Ip'~
~ ~

lp'~ ),1 e 8 tl

2@i ii 8; 8J

I y ) -exp[ i(—x8i+y82j I y ),

A

FIG. 3. Zero map of a state of Chem character +1 for
4. The positions of the six double zeros are shown.

where E is the energy of state y . As demonstrated by
Thouless and co-workers, 3 the unweighted average of
ba,~(m) over all boundary angles is necessarily an in-

tegral multiple of e /h. This integer can be identified as
Ci(m), so that only the state y4 in Fig. 2 has a nonzero
boundary-condition averaged Hall conductance, as we
have checked by direct numerical calculation. Ci(m) is
an invariant (the first Chem character) characterizing
the vector bundle (the set of zeros (k) over the torus.
Intuitively the relationship between space-covering zeros
and the boundary averaged ba,~ is clear, because a
nonzero value of Ci can arise only if there is ambiguity
in our fixing the phase of the wave function y (r, 8i, 82)
over the whole space of boundary angles. ' The bundle
is trivial (and Ci 0) provided one can fix the phase of
the wave function at some fiducial point ro so that
y(ro, 8) is real and positive for all 8; this is possible pro-
vided there exists an ra such that itt(r0, 8) never vanishes.
For the states in the potential of Fig. 1 (four of which
are shown in Fig 2), only for y4 does a global choice of
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FIG. 4. Topology of the braiding of zeros associated with

the closed path ABCDEFA in boundary-angle space (inset).

8B ' ' ' 8F' 8A (Fig. 4). The knot consists of
lines joining the points (*,with two trajectories entering,
and two leaving each vertex. Those points (in real
space) interior to any closed loop can be "covered" by a
single zero, by contraction of the corresponding loop in

boundary-angle space to a point. If there are no exterior
points (which is the case of Fig. 4, because the knot is
connected around the torus in both directions) the Chem
character will be nonzero. If the knot is homotopic to a
point, then Ci =0. A more detailed discussion of the
braiding of zeros and the associated monodromy struc-
ture will be discussed in a forthcoming paper. '

To conclude, we have shown that studying the sensi-
tivity of nodes of the wave function to changes in bound-
ary conditions can be used to differentiate the behavior
of localized and extended states. An extended state may
be forced to vanish at any specified position in real space
by the appropriate choice of boundary conditions. This
nontrivial topological structure leads in particular to a
nonzero Hall conductance.

ro not exist.
More understanding of the character of the wave func-

tions can be obtained by the study of the braiding of
paths of the zeros gq(8) under continuous paths in 8.
We have found the existence of double zero g* at isolat-
ed points 8 to be a generic occurrence for all wave

functions in the band. " For 8 close to 8* the two nodes
(labeled here (J,(k) will be distinct; under a path which

circuits 8* (anticlockwise, say) and returns to the initial

point, the two zeros will orbit each other (either anti-
clockwise or clockwise, i.e., with sign 1) and inter-
change. The point g* is a branch point at the intersec-
tion of two sheets of the N, -valued function g(8); close
to 8*, two of the zeros are given by solutions of

(g —g*) =K i (8i —8i*)+K2(82 —8,*),

with K~ 2 complex constants. Because the base space is a
torus, the number of double zeros is even.

We have analyzed a state of Chem character +1 for
the case N, 4. The zero map for this state is shown in

Fig. 3, together with the location of the six double zeros
The value of Ci can be determined directly from

the topology of the knot produced by the motion of the
zeros under the closed noncrossing path 8A*
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