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Lower Symmetry of the Elastic and Piezoelectric Tensors
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A long-wavelength lattice-dynamical calculation of the elastic and piezoelectric tensors that does not
use the adiabatic approximation yields linear coupling to rotation as well as to strain in dynamic interac-
tions. This leads in the general anisotropic case to 45 independent elastic components (rather than 21 as
believed for over a century) and to 27 independent piezoelectric components (rather than 18). The new
coupling should be observable at temperatures close to a second-order phase transition where a zone-
center soft mode has fallen into the hypersonic region.

PACS numbers: 62.20.Dc, 03.40.Dz, 63.20.Dj, 77.60.+v

From the beginning of the formulation of the modern
theory of elasticity by Cauchy in the 1820's, there was
controversy over whether there were 15 or 21 indepen-
dent components of the stiffness tensor c;Jkt in a general
anisotropic (triclinic) crystal, until the experiments of
Voigt in the late 1880's gave strong support to theories
of 21 independent components. ' Except for one chal-
lenge by Laval in the 1950's, which was refuted by
Lax, 21 has been the accepted number ever since.

In this Letter, I derive that there can be 45 indepen-
dent stiffness components in a general anisotropic crys-
tal. The derivation is based on lattice dynamics in the
long-wavelength limit but does not invoke the adiabatic
approximation by which the inertial effects of the optic
modes are usually ignored. I show that the optic-mode
inertial effects cause a linear elastic coupling to rota-
tions, as well as to strains. I believe that these inertial
effects will make measurable contributions to stiffness
components of crystals when the frequency of a zone-
center soft mode driving a second-order phase transition
has dropped into the hypersonic region.

Some time ago we examined the total stress tensor of a
dielectric crystal possessing all long-wavelength modes
(optic and acoustic) of mechanical motion in interaction
with the electromagnetic field, including questions of
uniqueness. ' We showed that the total spatial-frame
stress tensor t;t, when properly defined, consists of the
symmetric Maxwell stress tensor m;J. of the vacuum elec-
tric field E and the vacuum magnetic induction field B,
of the flow material momentum —px, xj (also a sym-
metric quantity), where x is the spatial (center-of-mass)
position and p is the spatial (deformed) mass density,
and of the elastic stress tensor t J, an asymmetric quanti-
ty. The latter tensor was shown to be the entire stress
tensor entering the spatial-frame center-of-mass (elasti-
city) equation when body forces are put into the form of
an electric force acting on the dielectric (bound) charge
and a Lorentz force acting on the dielectric (bound)
current.

The antisymmetric part of the elastic stress tensor,
and hence of the total stress tensor, was shown to create
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where all H~ are held constant during differentiation.
Here y

" is one of N 1 vector internal c—oordinates"
that are closely related to optic-mode coordinates, m" is
the material-frame mass density associated with the v

internal coordinate, p Z is the stored energy per unit
material-frame (undeformed) volume, Ettc = —,

'
(xk ttx„g—Bite) is the Green finite strain tensor, II~ =X~;y;"

—V~ is a rotationally invariant measure of the internal
coordinate, and x; it = |lx;/8Xtt. The (total) internal
coordinate y

'=Y'+y' consists of a constant or spon-
taneous part Y' present in the natural (unperturbed)
state of the crystal and a part that varies from external
influences (e.g., strains or electric fields). Equation (2)
shows that the antisymmetric part of t;~ is not only an
internal coordinate or optic-mode effect, but also that it
is only a dynamic effect. Thus, the static stress tensor is
perfectly symmetric. In other words, the antisymmetric
part is always dispersive. Furthermore, it can be sur-

a torque that is balanced by a change in the internal an-
gular momentum density I of the optic modes:

J 'd(J!i)/dt =ejtktkj etjktkj,

where J is the Jacobian of the transformation from ma-
terial X to spatial x coordinates, tl/dt is a total (materi-
al) time derivative, and e;Jk is the permutation symbol.
Thus, the usual requirement that the antisymmetric part
of the stress tensor vanish to ensure angular momentum
conservation is not relevant to a medium represented by
a manifold of N vector matter continua (N is the number
of particles per primitive unit cell), N —1 of which lead
to 3N —3 optic modes, and one of which produces the
three acoustic modes.

The elastic stress tensor t;~ was shown ' to be expressi-
ble as
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mised from the time derivatives in Eq. (2) that the an-

tisymmetric part of t;j will be measurably large only for
acoustic-wave frequencies near an optic-mode resonant
frequency. To bring such a resonant frequency near to
the accessible acoustic region will probably require the

use of a soft mode whose frequency approaches zero at a
second-order phase transition.

To evaluate the generalized stiffness tensor and piezo-
electic stress tensor explicitly requires (1) the use of the
stored energy written to bilinear order,

p + g ~7Bf4 IIB +g jkI4Bcf4 EBc+ jvIABCDEAB+cD (4)

where the "M are expansion constants having tensor in-
dices as subscripts, internal-coordinate designations as
postsuperscripts, and mnemonic notation (mn 20, 11,
02) indicating the fields to which they couple as presu-
perscripts; (2) the solution of the internal-motion equa-
tions,
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for a harmonic excitation (angular frequency co), where
q" is the charge density associated with the v internal
motion; and (3) the linearization of Eq. (2). ' For the
display of the result, it is convenient to transform from
the vector internal coordinates to the scalar normal (op-

2g M"/'n""(m m") ' = Q)n " (7)

Here n " (v 1,2, . . . ,N 1; k=—1,2, . . . , 3N —3) are
the optic-mode orthonormal eigenvectors, and Qk are the
transverse optic-mode frequencies.

The result of this calculation is
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a similar relation between N", the spontaneous part of
the normal coordinate, and Y"; and

11~k 1 1~k 1 1~k &
kv mv~m

2p2~ g ij ab 2gg ij a b

k 0 CO km v 0 k CO

2
11 k kv mv m&abni nj N

+N
km v Q) CO

k 11 k k kv mv m

~ ch Nj 2~~ chni nj N

k Qk CO km v Q) CO

and for compactness I use
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Note that for co&0,
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which leads in the most general anisotropic case to 45 in-
dependent components of the stiffness tensor c;j,b(co)
and 27 independent components of the piezoelectric
stress tensor eh;j(co). Because of this generalized sym-
metry the displacement gradient u, b =Bu,/Bxb, not the
infinitesimal strain, is the correct independent variable.
The displacement gradient is a sum of infinitesimal
strain, u, b-(u, b+ub, )/2, plus an infinitesimal rota-
tion, ul, bl =(u, b

—ub, )/2. Note that terms in c;j.,b(co)
and eh;j(co) that give new antisymmetric contributions
are proportional to m as expected from the derivatives
appearing in Eq. (2). It should also be noted that all
such terms depend directly on %, the spontaneous or
constant parts of the optic-mode coordinates. That such
quantities exist is readily shown by the calculation of the

spontaneous polarization of a pyroelectric or ferroelectric
crystal. The result,

Ps g q very g jkNk

would not exist without the existence of N", or equiva-
lently of the spontaneous part Y"of the internal coordi-
nates.

I wish to emphasize that the above derivation of low-

ered symmetry of the elastic and piezoelectric tensors is
based on accepted lattice dynamics of real crystals. It
obtains a new result through (a) the lack of use of the
adiabatic approximation and (b) the recognition that
optic-mode coordinates have, in general, spontaneous
parts. In contrast, the Laval proposal, while having
some predictions in common with this work, was based
on hypothetical noncentral forces created by the charge
density of valence and conduction electrons. The ex-
istence of the noncentral forces was believed unrelated to
the use or lack of use of the adiabatic approximation.
For the latter reason the Lax refutation of the Laval
proposal invoked the adiabatic approximation. Clearly
the purely electronic motions envisaged in the Laval
model are appropriately handled by that approximation.
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For these reasons I regard the present derivation as quite
distinct from the Laval speculation. Furthermore, I note
that the use of the adiabatic approximation in the Lax
refutation makes it inapplicable to the present work.

Lastly, one should remote that an underdamped zone-
center soft mode has been observed in chloranil at a fre-
quency of about 2 cm '=60 GHz' at a temperature
slightly below the second-order phase transition. Since
acoustic waves at frequencies of order of 30 GHz can be
studied by Brillouin scattering, the terms proportional to
to /(0, —to ), where s denotes the soft mode, should be
measurably large. On the other hand, I do not believe
that the acoustic velocity anomalies observed very near
or below the commensurate-incommensurate phase tran-
sition in BaMnF4 by Fritz' and in RbH3(Se03)2 by
Esayan et al. ' result from this mechanism. For one
thing the frequencies of measurement, 4 to 30 MHz in

Ref. 15 and 15 to 90 MHz in Ref. 16, are very low. Sec-
ondly, the incommensurate phase possesses a helical
structure modulation that may produce a measurable
acoustic activity effect' ' which modifies the acoustic
velocity through a fifth-rank tensor term. However, an
explanation based on wave-vector dispersion' has not
proven successful, nor has a model based on phasons. '

I wish to acknowledge useful conversations with J. F.
Scott concerning the anomalies near commensurate-in-
commensurate phase transitions.
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