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Experimental Observation of Nonsymmetrical N= 2 Solitons in a Femtosecond Laser
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We report here the first experimental observation of nonsymmetrical A =2 solitonlike pulses. These
solitons are produced by a passively mode-locked dye laser. The evolution of the pulse spectrum has
been recorded and compared with theoretical predictions of the nonlinear Schrodinger equation.

PACS numbers: 42.50.Qq, 06.60.Jn, 42.55.Mv, 42.60.Gd

Since the first production of subpicosecond pulses by
use of passive mode-locking of dye lasers, ' great progress
has been achieved. With the introduction of systems to
control the intracavity group velocity dispersion, pulse
durations as short as 30 fs have been obtained. It is
now well established that soliton mechanisms are respon-
sible for the formation and shortening of pulses in these
passively mode-locked and disperison-controlled lasers.
Femtosecond pulses have also been produced with either
fiber Raman amplified soliton lasers working in the 1.5-

pm range, or soliton narrowing in optical fibers. 67 In
all works dealing with temporal soliton propagation,
spatial soliton self-guided propagation, or theoretical
studies on soliton lasers, only symmetrical shapes were
considered. This leads to the misconception that solitons
could only have symmetrical shapes. In this Letter, we

report the first (as far as we know) observation of the
time evolution of nonsymmetrical N=2 solitons. These
pulses are directly produced by a colliding pulse mode-
locked (CPM) laser. Moreover, this experimental obser-
vation gives a new proof of the soliton character of the
pulses obtained from CPM lasers.

With use of the slowly varying-envelope approxima-
tion, pulse propagation in a nonlinear medium can be de-

scribed with the so-called nonlinear Schrodinger equa-
tion (NLSE). The pulse envelope amplitude u(z, t)
satisfjes the following equation:
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where t is the pulse local time and z is the normalized
distance in the propagation medium.

Zakharov and Shabat' have shown that the NLSE
can be solved by the inverse scattering method. The
stable solutions for propagation are called soliton bound
states. Each solution is characterized by a set of com-
plex constants [(J,CJ]~-~. . . Jv. The complex (~'s are the
poles of the soliton and the C~'s are its residues. Za-
kharov and Shabat showed that bound states are ob-
tained only if all the poles (J's are on a line parallel to
the imaginary axis. If they are not, the solution sepa-
rates into different pulses. With no loss of generality we
will then assume that the N poles (J's characterizing a
¹ rder soliton lie on the imaginary axis. Therefore we
write gJ l r/J

Using Zakharov and Shabat's results, one can obtain
the analytical expression for an N-order soliton. The
N=2 soliton shape u(z, t) can be written down explicit-

u(z, t) =2N(z, t)/D(z, t), (2)

where

and

N(z, t) =C) [I+22]exp( —2rt~t+4irt; z)+ C2[1+2 ~ ] exp( —2rt2t+4irtzz)

D(z, t) =1+(C)/4rt~ ) exp( 4rt~t)+ (C2/4rt—2) exp( —4rt2t)+2~22

with

+2[C C2/(g +q ) ]exp[ —2(rt, +rt )tl cos[4(q, —
i1 )z], (4)

A, =C,'[(rt, —rt2)/(rt(+@2)]'/4rt. exp( —4rt t), j=1,2.

In the expression (2) an N =2 soliton is uniquely determined by four constants: two imaginary poles irt &
and irt2, and

two residues C~ and C2. In fact, Haus and Islam have shown that the four degrees of freedom of the complex residues
CJ's affect the soliton in restricted ways. They found that the imaginary parts of the residues only introduce a global
soliton phase shift which can be absorbed in a shift of the origin of t. So we can say that an N=2 soliton is uniquely
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described by a set of four real constants fri&, g2, C&, C21.
Symmetrical solitons are obtained when residues are re-
lated by

(6)

tally obse."ved because it is very difficult to generate the
exact u(z =O, t) in amplitude and phase before launching
the pulse in a nonlinear medium. In the experiment de-
scribed here, the generating and propagation media are
not separated. We have used a CPM dye laser contain-
ing a sequence of four prisms which allows a precise ad-
justment of the group velocity dispersion inside the cavi-

Note that even for the restricted case of symmetrical
solitons, one can find an infinity of N=2 solitons. The
usual solution characterized by up(z =O, t) =2secht cor-
responds to poles q~

= —,
' and r)2= —,', and to residues

C~ =2 and C2=6. Other sets of poles with residues fol-

lowing the expression (6) give symmetrical solitons as
those sketched in Ref. 9. When Eq. (6) is not verified,
the N=2 soliton temporal shapes generally present a
double humped structure with one of the peaks much
higher than the second one. ' All these N=2 solitons

present a periodical evolution of their shape. The period

Tq only depends on the pole values Tz =el(rip rli).
As an example, evolutions of an N=2 soliton temporal
shape and spectrum during a period T~ are sketched in

Fig. 1, for g~ =0.7, r12=1.3, C~ =0.7, and C2=1.1 [the
sum of the poles is chosen to give ri~+ r)2 =2, in order to
have the same energy as the solution given by up(z, t)].

Such a nonsymmetrical soliton is not easily experimen-
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FIG. 1. Theoretical evolution of a nonsymmetrical N=2
soliton: (a) temporal pulse shape; (b) pulse spectrum.

Ct:z .5

0
-600 -400 -200 0 200

DELRY TINE ( 5 s )

400 600

FIG. 2. Autocorrelation function recorded (a) at the begin-
ning of the soliton period (r =0), (b) after 275 cavity round
trips (r =TI /4), and (c) after 550 cavity round trips
(r =T&l2). As a comparison the autocorrelation function aver-
aged over the entire period is given in dashed lines.
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ty. In its usual working regime, our laser produces

stable pulses with duration as short as 40 fs at 620 nm.

These pulses correspond to N=1 solitons. If we intro-4

duce in the cavity less negative dispersion than the value

corresponding to the minimum pulse width, the laser

wavelength shifts toward the red. By focusing or de-

focusing the laser-beam spot in the diethyloxadicarbo-

cyanine iodide jet, and thus varying the incident optical

power density, we are able to obtain N=l, N=2, and
N=3 solitons at 622 nm. These pulses are characterized

by a modulated pulse-train envelope with the (N —1)
characteristic frequencies of a N soliton. In a recent pa-
per" we have studied the evolution of the pulse temporal

shape in N = 3 soliton regime.
In order to study N=2 solitons, the beam spot in the

diethyloxadicarbocyanine iodide jet was defocused until

only one frequency (near 80 kHz) was observed in the
pulse-train envelope modulation. The pulse autocorrela-

tion function at different points of this period was then

recorded with the experimental technique described in

Ref. 4. The result is displayed in Fig. 2, together with

the autocorrelation function averaged on the whole of
the soliton period. One can only see a small variation of
the amplitude of the wings and a small increase of the

autocorrelation maximum between the beginning [Fig.
2(a)l and the middle [Fig. 2(c)] of the period. The fact
that the pulse wings never disappear during the period

seems to indicate that this N=2 soliton is not character-
ized by a sech intensity temporal shape at the beginning

of the period.
In order to obtain more information on the exact

profile of this pulse, we have recorded the evolution of its

spectrum along the soliton period. We have used an op-
tical multichannel analyzer triggered synchronously with
the pulse-train envelope modulation. This modulation
was used to produce a very short high-voltage pulse
which gated the microchannel plate intensifier. The gate
width was about 10 ns which is less than the laser cavity
round-trip time (12 ns). We can then obtain the spec-
trum of single pulses located at different points of the
soliton period. Figure 3 shows the experimental record-
ings of the pulse spectrum evolution along one soliton
period T~. This figure is clearly consistent with the spec-
trum evolution of a nonsymmetrical N=2 soliton.

We have tried different combinations of poles and resi-
dues values in Eq. (3) in order to obtain a general evolu-
tion of the soliton autocorrelation and spectrum close to
the experimental results sketched in Figs. 2 and 3. In all
cases, the pulses are composed of a high peak followed

by a small one. These two pulses exchange a part of
their energy during their evolution. The time delay be-
tween the two pulses can be obtained from the autocorre-
lation trace and is about 250 fs. Such a pulse-shape evo-
lution explains why we never obtained autocorrelation
traces without wings. As exhibited in Fig. 1(b), the set
of values g~ =0.7, F2=1.3, C~ =0.7, C2=1.1 gives a
reasonable fit with experimental data for the spectrum.
The agreement is not so good for the autocorrelation
traces: The ratio between the peaks of Figs. 2(c) and
2(a) is clearly smaller than expected from the theoretical
plot of Fig. 1(a). Several effects can explain this
discrepancy. First, time jitter in the triggering of the au-
tocorrelator amounts to a decrease in the time resolu-
tion of the measurement, and therefore increases the
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FIG. 3. Experimental recording of the pulse spectrum evolution during a soliton period. Note that the shift between each curve
corresponds to about 70 cavity round trips. It can be deduced from the comparison between these results and Fig. 1 that the large
intensity peak occurs before the small one.
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width while decreasing the maximum of the peak.
Second, the energy of the pulse actually changes during
the soliton period, contrary to the hypothesis of the
NLSE. This energy modulation is observed on the
pulse-train envelope and corresponds to a minimum en-

ergy for the maximum predicted peak power (r =T~/2).
Both of these effects can account for a 40% decrease of
the peak-value ratio, which gives fair agreement with ex-
perimental data.

It can therefore be concluded that the CPM laser pro-
duces pulses with changing temporal shapes, which can
be described by theoretical results for a N=2 soliton, at
least as a first approximation. This result suggests the
use of a perturbation technique on the NLSE in order
to determine why and how the laser selects a particular
type of soliton. Such an approach could include satur-
able gain and loss in order to explain the observed energy
modulation as a periodic motion of the poles. " More-
over, some mechanisms nonsymmetrical relative to the
pulse local time, such as self-phase modulation, ' could
explain the production of nonsymmetrical solitons.

In conclusion, we present here the erst experimental
observation of a nonsymmetrical soliton. We have per-
formed a spectrum analysis of its evolution along the sol-
iton period. This result indicates that, in this particular
regime, a CPM laser produces double-peaked pulses with
a shape that evolves with a period of 1100 cavity round
trips. The remarkable consistency of these experimental
results with the nonlinear Schrodinger equation (even if
the nonlinear properties of the laser cavity are much
more complex than those supposed in this equation) sug-

gests a new approach for the theoretical description of
CPM lasers.
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