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It is argued that, in fundamental string theories, as one traces the universe back in time a point is

reached when the expansion rate is so fast that the rate of string creation due to quantum eff'ects bal-
ances the dilution of the string density due to the expansion. One is therefore led into a phase of con-
stant string density and an exponentially expanding universe. Fundamental strings therefore seem to
lead naturally to inflation.

PACS numbers: 98.80.Cq, 11.17.+y

At first sight the attractive idea that cosmic strings'
or even fundamental strings played a role in cosmology
appears not to go very naturally with the idea of
inflation. Classically, during a period of exponential ex-
pansion, any string present in the universe would simply
be conformally stretched, its length growing as a, the
scale factor. Since the volume of the universe scales as
a, the string density rapidly becomes negligible. If one
insists on inflation, the only way to have cosmic strings
play a significant role is to form the strings at the end of
or after an inflationary era. 5 However, in this Letter I
shall show that for infinitely thin "fundamental" strings
there is a more interesting possibility. As the universe is

traced back into the past, quantum effects created strings
at a faster and faster rate until a point is reached where
the string density approaches a constant. One is there-
fore automatically led back into a period of exponential
expansion, i.e., inflation. Far from being incompatible
with inflation, fundamental strings seem to imply it.

Independently of the present work, Aharonov, Englert,
and Orloff recently conjectured that such a situation
might occur, where the Hawking temperature of the ini-
tial De Sitter space-time is equal to the string "limiting
temperature. " The calculations I report here lend sup-
port to this conjecture, although, as I shall explain, the
exact numerical factors are difficult to check.

In theories based on closed strings, such as heterotic
strings, there is a fundamental relation between
Newton's constant G, the string tension p, and the gauge

coupling constant g: Gp=g /32tr =10 . This is too
large (but only just!) for these strings to exist today—one such string across the horizon would cause unac-
ceptable distortion of the microwave background. '

However, in the heterotic theories the fundamental
strings become attached to axion domain walls at the
QCD scale and thereafter rapidly disappear so that
there would be no such conflict with observation, In
theories with both open and closed strings, such as the
type-1 superstring, Gp is proportional to (/p~/R), where

/p~ is the Planck length and R is the radius of the extra
six-dimensional space. There may even be models where

Gp = 10, as required to form galaxies and clusters, "
and where the strings do not disappear.

In any case, I will ignore the interesting issue of
whether fundamental strings can form galaxies like
cosmic strings and merely assume that there were funda-
mental closed strings with Gp«1 present in the very
early universe. I will also assume that compactification,
if necessary, has occurred and only the four-dimensional
string modes may be excited. I will ignore interactions
except insofar as they allow the string network to reach
thermal equilibrium —the string coupling constant is in

any case not known, being determined by the expectation
value of the dilaton field.

Let me begin by reviewing what is known about string
dynamics in an expanding universe. At low densities the
strings are well out of thermal equilibrium and a net-
work of strings evolves just as cosmic strings do. ' As

1988 The American Physical Society 549



VOLUME 60, NUMBER 7 PHYSICAL REVIEW LETTERS 15 FEBRUARY 1988

one proceeds back in time, the string density approaches
a density p= p and a phase transition occurs' ' where
infinite Brownian strings and a scale-invariant distribu-
tion of loops are formed. At this point the expansion
time H ' is (Gp) 't

p
't » p 't, which is the typi-

cal scale on the string network. It seems safe therefore
to assume that the strings have reached thermal equilib-
rium. The fact that fundamental strings have a limiting
temperature =p'~ plays an interesting role here —it
means that the radiation, as long as it is in thermal con-
tact with the string, cannot attain a density higher than
=p —so as the universe contracts, it becomes string
dominated. Note that whilst the canonical ensemble
breaks down at these densities, the more fundamental
microcanonical ensemble is still perfectly well defined. '

What happens at still higher densities? Let us begin

by considering a single long straight string in an expand-
ing background. I shall consider a De Sitter background
for definiteness and calculational simplicity, but the
string creation that occurs would happen in any expand-
ing background. The equation of motion for small trans-
verse oscillations y(x, t) [y is the co m-oving displace-
ment] about a long straight string along the x axis is'

y+2(a/a)y =y", (1)

where y—=8y/Brt, y'=By/8x and I use coordinates in

which the metric is conformally flat: ds =dt —a dx
=a (rt)(drt —dx ) with a =e '= —I/Hrt, where H is

Hubble's constant and —~ ( rt (0 is conformal time.
Equation (1) is exactly the same as the equation for a
minimally coupled massless scalar field, which has been
extensively studied in the context of inflation. ' The solu-

tion to (1) is

y = g [aqZq+(rt)sin(kx) at', Zt, (rt)sin(kx)] (2)
p k nx/L

for a straight string of length L and with fixed end points. The canonical conjugate momentum is tr =pa y; imposing
the canonical commutation relations yields [aq, a„*]=8„i, as long as the mode-function components Zt, (rt) are normal-
ized by the conserved norm ia (Zt*, Zt,

—Zi Zt, ) =2/L. Zt,
+ and Zt, are "positive" and "negative" frequency modes. Zq+ is

given in general by

Zt,
+ =(—rt) H(~/2L) ' [c)Hi(t2( —krt) +c2H3t2( —kq)],

and Zg —=Zt,+*. Here H3t2(x) =(2/ttx) ' ( —
1
—i/x)e'"

ZI, is correctly normalized if c~c~* —c2c2 =1. The be-
havior of a mode X~ is very simple. As long as the physi-
cal wavelength ak ' of a mode is inside the Hubble ra-
dius, Xp oscillates with constant physical amplitude asap.

As the physical wavelength grows it crosses the Hubble
radius and the co moving amplitu-de Zt, becomes "fro-
zen,

" so that the physical amplitude grows as a. Return-
ing to (3), if we quantize the modes and define the vacu-
um state by at, IO) =0, then different choices of vacuum
correspond to difl'erent choices of c ~ and c2. In De Sitter
space the "adiabatic vacuum" or "Bunch-Davies" vacu-
um is defined by c~ =1, c2=0, and this (Heisenberg)
state is the state that I shall assume the string is in. '

In this state one calculates, for example, the mean
square transverse displacement

&y') —=J &0 I
y'(x)

I 0)

DHg 1

2pz "o k
(4)

where the k sum has been replaced by an integral, and I
include D transverse modes. The first term in (4) is the
usual fiat-space divergence: The physical displacement
ye=ay~ has the same divergence (D/2ttp) f dk/k as in

Aat space. I subtract this divergence. The second term
is a new divergence in curved space-time. However, if
one considers it mode by mode in the context of a finite
amount of exponential expansion, it is easily understood

in the "adiabatic" subtraction scheme described in Ref.
17, for example. Modes with k »EH, where E is the to-
tal e-folding factor, are always within the Hubble radius
and their amplitude is unaffected by the expansion.
They are subtracted from (4). Modes with k (&H are al-
ways well outside the horizon and simply match on adia-
batically to the modes before and after inAation. These
are also subtracted. One therefore finds

(,z) DH dk DH
1 (E)

2pg ~ H k 2p~
(7)

The (y ) term gives no contribution after the flat-space

DH dk D(y') = (5)
2pz "H k3 4irp

dominated by the lowest modes. One can picture this re-
sult by saying that the modes with wavelength of the or-
der of the Hubble radius have a physical fluctuating
"width" (y~) = I/p which gets amplified by the expan-
sion after they pass out of the Hubble radius. Higher-k
modes have to wait longer to cross the Hubble radius
(crossing at a =k/H) and so they lose out in growth.

More interestingly, one can calculate the energy ac-
quired by each mode in this process. For small ky the
energy is given by'

e =pa dx(l+ —,
' y'2+ —,

' y2), (6)

where the first term is just the classical stretching. Now,
just as in (5), we find
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subtraction. Thus we deduce that the fractional energy
in the perturbation grows linearly with time. This is be-
cause each mode receives a boost k y) =H /p on cross-
ing the Hubble radius. k yk remains constant thereafter
as the wave is conformally stretched. Thus all modes
contribute equally to the energy. In fact, if one cuts ofl'

the k integral for k&( ', i.e., "smoothing out" the
string on a scale g, one finds the total length is pro-
portional to 1+(DH /4pz)ln(1/Hg) = (Hg)', with
=DH /4prr. Writing L=R~/e(P —1), where R is the
course-grained distance, we find that P, the fractal di-

mension of the string, is given by P=l+DH /4prr.
From this one sees that with cosmic strings of the
Nielsen-Olesen type these quantum effects are usually
small. This is because the width of the string is =p
and this must be less than the Hubble radius in order for
the string not to be "pulled apart" into its constituent
fields by the expansion. But if p

'/ ((H ', the induced
fluctuations are small and the fractal dimension close to
unity.

Now the above analysis is only valid for perturbations

y smaller than their wavelengths. But we are interested
precisely in the case when this is not true —when a
length of string larger than the length originally present
is created per expansion time. The above analysis does
indicate the possibility of this happening —for large
enough H /p we can apparently produce unlimited
quantities of string per expansion time. Is this correct?
For arbitrary large-amplitude motions the string equa-
tions are, in fact, not very different from (1) ':

y+2(a/a)yA =(I/e)8 (y/e). (8)

Here A—:1
—y, e2=8 y /(1 —

y ), and cr parametrizes
the length of the string. The most important term is 2
which couples the string to the background. Certainly
for A =0 there would be no string creation. However,
classically (y ) —,

' for excited modes well inside the
horizon, and this is only reduced near the horizon, where

most of the string creation occurs. So we have —,
' &A

& l. In fact, reducing A to —,
' results in Hankel func-

tions of order J2 instead of —, in (3), with little diminu-

tion of the string-creation effect at the Hubble-radius

crossing. What about t. ? For helical waves we can take
e to be independent of a, and e =(1 —

y )/|1 y . Now
there are two effects which conspire to weaken the curva-
ture term in (8) relative to that in (1). First, 1 —

y & 1

and, second, (8 y)2& (|1 x), where x is the x com-
ponent of the vector y. Both of these effects are in any
case of order unity. Following through the analysis from
(1) we see that weakening the y" term only increases the
amplitude of the induced fluctuations. Thus the estimate
of y~ = I/p at Hubble-radius crossing is still certainly
valid.

The most serious consequence of the linearized calcu-
lation is, however, to ignore the fact that creation of
string modes larger than the horizon produces more

string which will in turn produce further string. We can
account for this in a phenomenological equation,

B,p, = aH—p, +P(H'/err) p„ (9)

FIG. l. As the universe is traced back in time it becomes
string dominated. The curve shows the string density p, as a
function of time as one goes back still further. The string den-

sity asymptotically approaches a constant, p~; =9@/4G = 10
of the Planck density for the heterotic string, for example,

where the first term is the dilution of string density due
to the expansion and the second is due to string creation.
a and P are coefficients of order unity. For long strings
such as in the calculation above, a =2 and P =D/4, and

a small energy perturbation obeys 8, (Bp,a ) = (DH /

4pz)p, a =const, so that Bp,a o:t in agreement with (6)
and (7). However, the full solution is, of course, ex-
ponential growth of Bp,a .

Now let us try to self-consistently feed back the effect
of string creation into the expansion rate of the string-
dominated universe. Assuming a flat universe (any ex-
ponential expansion would quickly make the universe

very flat), we can substitute (8nG/3)p, for H in (9).
Now we see from (9) that there is an unstable fixed

point at H =H, d; =ape/P or p, =3ap/8PG =—p,d;. If the
density is near p,d;, then it remains nearly constant as the
universe expands. Thus the universe expands exponen-

tially and quickly becomes flat and homogeneous.
Exactly how we got into the state p =p,d; in the first

place remains a mystery at this point —for the moment
one can only say that it is a phenomenological fact that
as we trace the universe back in time we are led into an

exponentially expanding phase.
It is interesting to compare the above formula for p,q;

with that conjectured by Aharonov, Englert, and Orloff.
They equate the Hawking temperature H/2z with the
string limiting temperature T~; =(3p/rrD) '/ . ' Thus
they obtain H =12p /nD. In fact if we are in four di-

mensions, with a =3 (because highly convoluted strings
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behave like matter classically, p, ~a ) ' and D =2, so

P = —,
' as above, we recover exactly the same result! Of

course as I said this is only an approximation of the true
result —the coincidence is intriguing nevertheless.

The trajectories of (9) are given, for p & p,d; by

1 +1 1
—Jz+(1 —z)'/ + ( 0)rz, 1+Jz+(1 —z)'

where H,d; =(8trG/3)p, d; is the fixed-point Hubble con-
stant and z =p/p, d;. This is shown in Fig. 1. Clearly if
we start with p =p,d;(1 —8), b « 1, the density remains
approximately constant for = —,

' In(1/8) Hubble times.
To obtain enough inflation, for example, to "solve" the
horizon problem we require an initial value of 6= e

l P
—40

This seems very small —if one assumes, for example,
that 8 is Gaussian distributed about zero with dispersion
cr= I/JN, where N= 1/Gp is the number of long
strings per Hubble volume, then the fraction of space
where 8 is so small would be tiny. However, the volume
where 6 is small gets inflated by exp(30,d;tt), with the
e-folding factor H,d;tt = —,

' ln(1/b). Thus the fraction of
the present universe occupied by regions where 8 was be-
tween 8 and b+d8 is proportional, for B«cr, to 6 / db.
Thus most of the universe would still be inflating! From
this viewpoint, such a small initial value of 8' in a region
of the universe as old as ours would be very likely indeed.

Let me summarize the findings of this paper. If we

follow our observable universe back in time into the very
early universe, at a density p= (Gp) ppl, where ppl is

the Planck density, a phase transition occurs and the
universe becomes dominated by very long strings. As we
proceed back to higher densities we ap roach

p,d; = (Gp )ppl where the Hubble radius is = p
' . The

universe is expanding exponentially and in consequence
has become very flat and homogeneous. At this point the
Hawking temperature of the Desitter space is of the
same order as the string limiting temperature. The mean
separation of the strings is = (pi, the Planck length, and
one might expect that string interactions prevent the
density from growing any higher.

The calculations reported here are very preliminary
and certainly leave many questions unanswered. How
large are the fluctuations in the initial DeSitter space-
time; does this scenario have the same "fluctuation prob-
lem" that most inflation scenarios do? What are the ini-
tial conditions for the universe (or perhaps just for our
region of the universe), and how long does the exponen-
tially expanding phase last? It is interesting to note that

in a collapsing region of the universe, as argued above,
the radiation density is limited by the presence of long
strings —but is the string density itself limited, perhaps
by string-string interactions? If so, what happens to the
trajectories for which p & p,d? Lastly, it would be very
interesting to try and describe the "string-driven
inflation" state in terms of string field theory, perhaps
along the lines of the work of Horowitz et al. '
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